Modeling of change in asphalt concrete dynamic modulus

Structural mechanics

Historically, since the 1930s, deformation and power criteria were defined by methods of calculation of non-rigid road clothes (the deformation modulus, the California bearing ratio, the dynamic modulus). For almost a centenary history considerable statistical changes of the specified indicators in road layers were collected. However, the physical essence of these changes and their regularity still remain unknown. Over the last decade in the field of auto roads the use of energy criteria has been more universal in comparison with the strength and deformation. These criteria bear in itself a predictive function, allow not only estimating integrally and complexly the pavement functional condition, but also managing this state during operation. Despite this fact, in today’s regulatory documents one of the main characteristics of asphalt concrete is still the deformation indicator – dynamic modulus. At the same time, now there is no reliable approach that would make it possible to define change of dynamic modulus of asphalt concrete in operation, so this task is still urgent. Moreover, there are no accurate dependences of ratio change between static and dynamic modules of asphalt concrete during operation. Change of dynamic modulus as private indicator can be used at calculation of energy functions variation. In this paper the authors made an attempt to simulate changes of dynamic modulus of asphalt concrete when loading and analyzed the suggested viscoelastic model. New results, in particular analytical dependences, can form the basis of new regulatory documents for asphalt concrete pavement construction.