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Abstract. Strength assessment of earth dams is mainly conducted using a plane design scheme, which does
not always lead to adequate results. In this paper, it is proposed to assess the stress state of earth dams in a
three-dimensional statement. Consequently, to assess the stress-strain state and dynamic characteristics of
earth dams, appropriate mathematical models, methods and algorithms are built. The basis of the developed
methods for solving specific problems for a spatial structure is a finite element method, the Gauss method (or
the square root method) and the Muller method. Reliability of results is proved by solving a series of test
problems. With the developed methods, the stress-strain state and dynamic characteristics of the Gissarak
and Sokh earth dams were investigated. Based on the results of the study, it has been shown that for some
types of earth dams, at preliminary assessment of the stress state and dynamic characteristics of structures,
it is possible to use a plane-deformable model of calculation. Studies have shown that to ensure the required
accuracy in assessing the stress state and dynamic characteristics of complex inhomogeneous spatial
systems (such as earth dams), it is necessary to make calculations using a three-dimensional model. The data
obtained as a result of research allowed to reveal some features of the stress state in a spatial case, indicating
dangerous areas with the greatest stresses, as well as to study the pattern of natural oscillations that cannot
be described using a plane model.

1. Introduction

Correct definition of the stress-strain state (SSS) and dynamic characteristics of the object under
consideration is a major factor in assessing the strength of structures. Reliable definition of these parameters,
in turn, depends on the chosen design scheme of structure, used mathematical models describing the
processes occurring in the object under consideration, the equations of material state and the solution methods
of considered problems [1-5].

Recently several papers [6-14] have been published, where static and dynamic stress-strain states of
various earth dams are considered in plane and spatial statements, taking into account various factors, such
as design features of structure, moisture-content properties of soil, structure interaction with water reservoir
and hydro-mechanical phenomena.

Along with that, it is necessary to mention separately the following papers devoted to the solution of
various topical issues related to the state assessment of earth structures.

In [10], the state of the dam was analyzed by numerical simulation taking into account water-saturated
soil and hydro-mechanical phenomena. Material selection for the design of the dam was discussed.

Using the ABAQUS software package the state of the dam was analyzed in [11], taking into account the
interaction of the dam with water of the reservoir. Obtained results have shown that the neglect of this factor
leads to an overestimated value of stability and, as a result, to structure damage. The effect of clay and rock
bases on the cracks propagation in the dam body was considered.
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Reliability indices and safety factors of dams [12] were evaluated for various heights and slopes. It was
stated that the values of safety factors for high dams in normal conditions should be no less than 1.70 and in
seismic conditions no less than 1.40.

In [13, 14], the effect of hydrodynamic pressure on dam state during earthquakes was considered in a
plane statement. The results obtained showed that the neglect of rigid body-water interaction effect led not
only to an overestimation of the acceleration reaction in the rock-fill material, but also to an overestimation of
dynamic stresses in a structure.

Dynamic characteristics of the dam with filled reservoir were studied experimentally and numerically in
[14]. It was stated that the acceleration gain factors varied with the height of the dam depending on natural
frequency, modes of structure oscillations, depth of the reservoir, and other factors. It was recommended to
take these factors into consideration when designing a structure.

In [15], static and dynamic elastic-plastic analysis of the dam state by the finite element method was
carried out during the Wenchuan earthquake. To describe the properties of rock-fill material, an elastoplastic
model was used, taking into account the destruction of particles. Numerical calculations obtained
corresponded to a great extent to field measurements during construction and after the Wenchuan earthquake.

Bending strain of the dam was investigated in [16], since bending often led to structure destruction.
Using special programs and the finite element method, numerical modeling of dam bending rate was carried
out. The results of numerical simulation and statistical analysis have shown that an increase in elastic modulus,
Poisson’s ratio, internal friction angle and the ratio of core thickness to filter thickness would result in a
decrease in bending.

Hydro-mechanical properties of traditional and unconventional materials (i.e. clay material, masonry)
used in the construction of dams were analyzed in [17]. The use of unconventional material (soil and stone
mixtures) for reasons of ensuring dam stability was analyzed in more detail.

The above review of published papers shows that the problem of earth dam spatial calculation is studied
insufficiently [18—24] and therefore is of great interest.

Usually, when evaluating the stress-strain state of dams located in wide dam sites, it is sufficient to use
plane strain conditions, however, the use of plane designh schemes for earth dams located in narrow dam sites
still requires more careful checking of the accuracy of the SSS estimation of structures.

The state of earth dam under various effects is also determined by its length. As noted in [25, 26] for
extended dams (with a ratio of the crest length — L¢r to the dam height H equal to Lci/H > 6), calculations
can be made according to the plane strain scheme; in this case, it is possible to assess not the entire structure,
but only its central section. If the given ratio is violated, then the spatial nature of the dam is revealed. At the
same time, as studies in [6, 18, 19, 24—-26] show, the accuracy of dam calculation changes not only under
static load, but under dynamic effect as well.

Brief review presented here shows that obtaining of reliable results in the SSS calculation and
assessment of dynamic characteristics of earth dams are quite serious problems, since the task to develop
sound quantitative estimates of structure strength with account of actual geometric dimensions of earth dams
dictates the need to take into account spatial nature of structure operation [4, 6, 7].

Therefore, at present, it is necessary to give primary recommendations to assess the stress-strain state
and dynamic characteristics of earth dams by adequate design models that describe the actual features of a
structure.

This paper is devoted to the solution of the following issues:

—to assess the stress-strain state and dynamic characteristics of earth dams, a three-dimensional
(spatial) model is proposed that takes into account inhomogeneous and geometric features of a structure;

— a variation statement of the problem is given taking into account spatial strain state of earth dams
under consideration;

— the methods to solve specific tasks for real structures using spatial finite elements are proposed;

— the stress-strain state and dynamic characteristics of real earth dams are studied using spatial (that
is, three-dimensional) models and the models of plane strain;

— plane (plane-strain) and three-dimensional (spatial) models;

— primary conclusions on the use of three-dimensional models in assessment of the SSS and dynamic
characteristics of specific earth dams are given, based on the analysis of the results obtained.
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2. Methods

Dynamic characteristics, that is, natural frequencies, oscillation modes and damping coefficients of
structures are determined by studying natural oscillations of structures. Dynamic characteristics of a structure
are the passport of the considered structure, allowing evaluating in advance dynamic properties of a structure
as a whole.

2.1. Mathematical model

To assess the stress-strain state (SSS) and dynamic characteristics of earth dams, an inhomogeneous
three-dimensional model of the system, Figure 1, is considered, in which the base surfaces and side slopes
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0> 75752 gre rigidly fixed, the surface of the downstream X3 is stress-free, the hydrostatic pressure of

water acts on surface 21 (on the part of upstream slope which is lower than the BSL line, Sp), and an external
load is applied to a part of crest surface X of the site Zp.
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Figure 1. Three-dimensional model of inhomogeneous system.

Here V =V, +V, +V; is the capacity of the dam body (V1, V3 are the capacities of the upper and lower

retaining prisms, V2 is the capacity of the core); Zsl , 252 are the surfaces of the coastal slopes, 2o is the surface
of the base along the bottom, and 21, 22, 23 are the surfaces of the retaining prisms and the crest.

System material is considered to be elastic. In calculations the mass forces f acting on the system
and hydrostatic pressure of water [ are taken into account [4].

The aim is to determine the fields of displacements, stresses and dynamic characteristics of an earth
dam of V =V, +V, +V; capacity (Figure 1).

To simulate the process of strain and to assess dynamic characteristics of earth dams (Figure 1) in a
three-dimensional statement, the Lagrange variation equation, based on the d'Alembert principle for
inhomogeneous deformable bodies is used:

—IJIJ5EIJdV — I JIJ5€|JdV — I O-|J§€|Jdv —
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Physical properties of system material are described by the relations between stresses ¢ij and strains
&ij in the form [27]:

Oij = An&iOij + 2Hn&;j 2)

the relationship between the components of the strain tensor and the displacement vector is described by the
linear Cauchy relations [27]
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Further, when building mathematical models, uniform kinematic boundary conditions are taken into
account:

Xe) o:i=0. (4)

<l

Here ™' &j, oij are the displacement vector, the strain and stress tensors, respectively;
ou, 55”- are the isochronous variations of displacements and strains;

Ph is the material density of the system elements under consideration (index N = 1, 2, 3 means different
parts of the dam to which this quantity relates);

—h|

is the vector of mass forces;

P

lis the vector of external forces applied to area Xp;

P is the hydrostatic pressure of water.

In all the problems considered, the displacement vector in spatial coordinate system
X = {Xl, Xy, X3} = {X, Y, Z} has three components U= {ul, u,, u3} = { u, v, W} in all relations
i,j, k=123

Now, the variation problem to assess the stress-strain state of an earth dam can be formulated as
follows: it is necessary to determine (without taking into account the inertial forces) fields of displacements

—

u(x,t), . 5 N . . : .
( ) strains &j; (X, t) and stresses Oj (X, t) in an inhomogeneous three-dimensional system (Figure 1)

arising under mass forces (1?), external forces (|31) and hydrostatic pressure of water (), satisfying

equations (1), (2), (3) and corresponding to kinematic conditions (4) at any possible displacement ou.

In the case of determining dynamic characteristics of an earth dam, the variation problem under
consideration can be formulated as follows: it is necessary to determine the most ordered movements of the
system point, occurring according to a harmonic law at different amplitudes in the absence of external

influences, i.e. ( ]?), (|31), (P), satisfying the equations (1), (2), (3) and corresponding to boundary conditions
(4) at any possible displacement ou.
2.2. Method and algorithm

Variation problem set above (1)—(4) of the SSS assessment of inhomogeneous systems (Figure 1),
under the effect of hydrostatic pressure and mass forces, taking into account spatial factors, with the use of a
finite element (in the form of a hexahedral parallelepiped with 24 degrees of freedom) is reduced to the

resolving system of algebraic equations of N-th order:

[K{uj={P}, 5)

where the element stiffness matrix [K] of the system (Figure 1) is constant and depends on elastic
physicomechanical parameters of the system;
{u} is the sought for vector of nodal displacements;

{P} is the vector of external load (mass forces and hydrostatic pressure of water).

When deriving equation (5), the stiffness matrix [K] and nodal forces {P} are formed automatically
using the algorithm given in [4, 20].

Kinematic boundary conditions (4) are taken into account when forming the system of equations (5),
restricting its order only to equations that do not contain zero displacements. The order of the formed systems
of algebraic equations (5) in some calculations exceeded 4000.
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Solution of the obtained system of algebraic equations (5) was performed by the Gauss method and the
square root method [29, 30], taking into account the tape structure of the stiffness matrix. Solving the system
of equations (5), the components of displacements (U1, U2, U3) at each point of the system (i.e. displacement
fields) are determined; then using these data the components of strain (3) and stress (2) tensors are
determined, taking into account inhomogeneous structural features of systems.

When determining the natural frequencies and modes of oscillation, the considered variation problem
(1)—(4), with the use of a finite element (in the form of a hexahedral parallelepiped with 24 degrees of freedom),
is reduced to an algebraic eigenvalue problem for a homogeneous system of algebraic equations of N-th order:

{[K]- @’ [M]Hu}=0. 6)

Here [K], [M] are the stiffness and mass matrices, and @, {u} are the sought for eigenfrequency and

eigenvector of the system under consideration (Figure 1). The elements of stiffness matrix [K] are constant
and depend only on elastic physicomechanical parameters of structure material.

Solution of equations (6), (i.e. determination of eigenfrequencies) is carried out by the Muller method
[4, 31], and determination of eigenvector — by the Gauss method or the square root method [29, 30].

The order of the systems of algebraic equations (6) in some calculations reached 3000.

The algorithm to determine the eigenfrequencies and vectors of algebraic problems on eigenvalue is
described in detail in [4]. The essence of this algorithm is as follows:

1. With the iterative procedure of the Muller method, a sequence of eigenvalues of algebraic equations
(6) A1, A2, ..., An is determined.

2. Then, using expression (1 = a)z), the eigenfrequencies @, @,, ..., @, of algebraic equations (6) are
calculated.

3. By substituting the found values @, @,, ..., @,

, in equation (6), eigenvectors in (6) (i.e., oscillation

modes) {ul}, {uz}, e {un} are obtained by the Gauss method or the square root method [29, 30].

The program for determining eigenfrequencies and modes of oscillations of inhomogeneous spatial
systems is protected by the copyright certificate of the Patent Agency of the Republic of Uzbekistan.

2.3. Test problems to check the accuracy of the methods and computing algorithms

This section verifies the accuracy of the developed methods and algorithms solving test problems for
which the exact or numerical solution is known.

Problem 1. Consider elastic spatial structure in the form of a long rectangular parallelepiped under
uniform pressure P acting on the upper surface.

The parallelepiped rests on an absolutely rigid and smooth base, i.e.
X2=0:u2=0:012=0; 013 =0. (7)
Surface load is applied on the upper surface in the form of uniform pressure
X2 = a: ox2 = -P. (8
The side surface of the parallelepiped is stress-free.

It is required to determine displacements and stresses at various points of the parallelepiped under
pressure P using plane-deformable and spatial models. For the plane problem, the exact solution is known
[34]. In a specific calculation, the following geometrical parameters of the parallelepiped and mechanical
characteristics of material were used: P = 1 tf/m2; cross-sectional dimensions a = b = 2.0 m; the modulus of

material elasticity E = 1.0 tf/m2and the Poisson's ratio z=0.3.

Comparison of exact results (Table 1) with numerical solutions (Table 2) for the same points of the
parallelepiped shows good agreement of the values obtained both in terms of the displacement components
and in stress tensor components.

Problem 2. Natural oscillations of a body (height H = 8.0 m) of rectangular cross sections (b = 0.5 m;
h = 0.5 m), rigidly fixed along the base (X2 = 0) and with free upper end (X2 = H) are considered in the problem.

Mirsaidov, M.M., Toshmatov, E.S.
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Table 1. Exact solution of plane problem for section (X3 = 0.0 m) of the parallelepiped.

Coordinates, X2 X1=-10m X1=10m
(m) Uz Uz o1 o 012 us Uz  ou on on
0.0 -0.39 0.0 0 -1 0 0.39 0.0 0 -1 0
0.5 -0.39 —0.455 0 -1 0 0.39 —0.455 0 -1 0
1.0 -0.39 -0.910 0 -1 0 0.39 -0.910 0 -1 0
1.5 -0.39 -1.365 0 -1 0 0.39 -1.365 0 -1 0
2.0 -0.39 -1.820 0 -1 0 0.39 -1.820 0 -1 0
Table 2. Solution of spatial problem for section (X3 = 0.0 m) of the parallelepiped.
Coordinate, X1=-1.0m
X2 (m)
u1 u2 us o11 022 033 012 O13 023
0.0 —0.3889 0.0 -0.0 -0.2996 -0.9983 -0.41e=® 0.131e*? 0.157e%0 0.797e™
0.5 -0.3886 -0.4541 -0.417e* -0.2966 -0.9980 0.258e° 0.202e 4 0.246e1 0.600e™
1.0 -0.3883 -0.9091 -0.617e'* -0.2947 -0.9989 0.245e° -0.13%e'® 0.62%9e 0.235e™
15 -0.3881 -1.3648 -0.727e'* -0.2935 -0.9994 0.257e° -0.122e'® 0.509e 0.360e°®
2.0 —-0.3880 -1.8207 -0.947e* -0.2930 -0.9996 0.227e3 0.556e 4 0.29e™11 -0.607e71°

Natural frequencies and

spatial models.

oscillation modes of this body are determined using one-dimensional and

In one-dimensional statement, this problem has an exact solution [35] for the eigenfrequencies wi.

Solving this problem, the following mechanical parameters of material were used: specific weight of
material = 1.0 tf/m3; elastic modulus E = 1.0 tf/m? and Poisson’s ratio x = 0.25.

Exact solution of the body, obtained by one-dimensional model is compared in Table 3 with numerical
results obtained by three-dimensional models (using spatial finite elements) with developed computer

program.

Table 3. Table of eigenfrequencies.

Number of
eigenfrequency

Eigenfrequencies of a body, rad/sec

Exact solution by one-dimensional model

Numerical solution obtained by the
FEM with three-dimensional model

Bending Longitudinal Torsional

1 2 3 4 5

1 0.0248" 0.6150™ 0.1459 0.0248*
2 0.1556" 1.8450** 0.4376 0.1531*
3 0.4358 3.0749 0.7294 0.3536
4 0.8494 4.3049 1.0211 0.4174
5 1.4117 5.5349 1.3129 0.6159**
6 2.1089 6.7648 1.6047 0.7895
7 2.9455 7.9948 1.8964 1.0606
8 3.9215 9.2248 2.1882 1.2521
9 5.0370 10.4550 2.4799™ 1.2522
10 6.2919 11.6851 2.7717 1.7670
11 1.7869
12 1.8447**
13 2.3778
14 2.3779
15 2.4725%**
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In Table 3 one asterisk indicates the frequencies corresponding to the bending modes of oscillations,
two asterisks — the longitudinal modes and three asterisks — the torsional modes of the body, obtained by
spatial model.

Comparison of the exact value of natural frequencies of one-dimensional model with numerical values
obtained by the FEM with spatial model

Partial coincidence of corresponding frequencies with results of one-dimensional model exact solution
and with results obtained using the developed computer programs with three-dimensional model proves the
reliability of the developed methods, algorithms and the calculation program when determining natural
frequencies and oscillation modes of a spatial body.

Analyzing the obtained eigenmodes of body oscillations using spatial model, the spatial nature should
be noted: only the first two are the bending modes, the fifth is a longitudinal mode, and in the others, that is,
in the 319, 4th gth 7th 8th and 9t modes of oscillations the strain has a spatial character. This shows that one-
dimensional model is not able to fully describe the real strain under natural oscillations even of a thin bar.

3. Results and Discussion

Using the developed methods and algorithms the stress-strain state of Gissarak and Sokh earth dams
are studied in spatial statement, taking into account the actual geometric dimensions of the structure and
uniform and non-uniform structural features of a dam, arising under gravitational forces (own weight) and
hydrostatic pressure of water.

3.1. Assessment of the stress-strain state
As specific examples we have considered

—the Gissarak earth dam: height H = 138.5 m; base width By = 634.0 m; crest width Der= 16.0 m;
inclination coefficients of upstream and downstream slopes M1 = 2.2, M2 = 1.9; longitudinal dimensions: base
length Lp = 140.0 m, crest length L¢r = 660.0 m. Mechanical characteristics of material of different sections of
the dam are: volume weight y — kgf/cm3, Poisson’s ratio — g , shear modulus G — kgf/cm2: core —
y =0.0017 kgf/cm3, w =0.37, G =2780 kgf/cm?; transition zones — y =0.00215 kgf/cm3, x = 0.35,
G = 3500 kgf/cm?; retaining prisms — y = 0.0024 kgf/cm3, u = 0.25, G = 3210 kgf/cm?; slope strengthening —
y = 0.0017 kgf/cm3, u = 0.37, G = 84000 kgf/cm?;

—the Sokh earth dam: height H =87.3 m: base width Bw=530.0 m; crest width bcr=10.0 m;
inclination coefficients of upstream and downstream slopes M1 = 2.5, M2 = 2.2; longitudinal dimensions: base
length L= 21.0 m, crest length Lcr = 48.75 m. Mechanical characteristics of material of different sections of the
dam are: volume weight — 7, Poisson’s ratio — , shear modulus — G: core — y = 0.0017 kgf/cm3, 1 = 0.40,
G = 2820 kgficm? retaining prisms — y = 0.0021 kgf/cm3, i = 0.35, G = 3160 kgf/cm?; slope strengthening —
y = 0.00185 kgf/cm3, 1 = 0.35, G = 3100 kgf/cm?2.

Figure 2 shows the isolines of the stress tensor components distribution for the central section of the

Gissarak (Figure 2a, b, c) and Sokh (Figure 2d, e, f) dams under their own weight, obtained using a spatial
model of structures. Stress magnitudes in all figures are indicated in MPa.

Coordinate axes shown in Figure 1 have the following directions: the axes X1 (horizontal) and X2
(vertical) are in the plane of the central section; the X3 axis is perpendicular to this plane.

Comparison of the results obtained using spatial model (Figure 2a, b, c) for the Gissarak dam with
plane-deformable model shows almost the same pattern of stress distribution and their close values, i.e. under

vertical gravitational load acting on the dam, the patterns of stress components distribution (o011, 012, 622) in the
central section of the dam are identical. The maximum values of horizontal o11 and vertical o2 stresses are
observed at the bottom of the central — the highest — part of the dam (Figure 2a, b), and shear stresses
o012 — along the slopes (Figure 2c). At the same time, the distribution of stresses (Figure 2a, b, c) relative to
the X2 axis is almost symmetrical, since the structure itself is also almost symmetrical with a slight difference
in inclination coefficients of the slopes (M1 = 2.2, M2= 1.9).

When obtaining results in the vicinity of the onshore zones of the structure in contact with mountain
slopes, the condition of rigid fixation was set. The results obtained with spatial model have no plane analogues.
Therefore, when calculating this zone, it is necessary to use a spatial model.

Mirsaidov, M.M., Toshmatov, E.S.
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Figure 2. Isolines of distribution of stress tensor components in the central section
of the Gissarak (a, b, c) and the Sokh (d, e, f) dams obtained using spatial model under own weight.

The ratios of geometric dimensions for the Gissarak dam (the length of the crest to the height — Lc/H,
the length of the base to the height — Lo/H and the width of the base to the height — Bw/H) are: L¢/H = 4.78,

Lo/H =1.01, Bw/H = 4.57, respectively. Therefore, the use of plane and spatial models for this dam gives
almost identical results, so, it is possible to use plane models in static calculations of such dams.

Isolines of stress components distribution of the Sokh dam, obtained with spatial model (Figure 2d, e, f)
shows a significant difference from the results obtained using plane-deformable models. The maximum values

of normal horizontal stresses — o011 and vertical stresses — o2 (Figure 2¢, d) occur at the bottom of the central

— the highest — part of the dam, and shear stresses 12 — along the slopes (Figure 2e) and in upstream
retaining prism. The analysis of the results obtained shows that the calculation of this dam using a plane-
deformable model does not provide necessary accuracy at estimatingthe stress state of the dams of such
dimensions. This, apparently, is explained by the small ratios of the horizontal dimensions of the dam to its
height, which are Ler/H = 0.56, Lo/H = 0.24, Bw/H = 6.07. In this case, the structure is not extended and does
not meet the condition to choose a model of plane strain. It should be considered as a three-dimensional body.

The analysis of stress state of the Gissarak dam under its own weight, by plane and spatial models,
shows a qualitative and quantitative identity of stresses across the section.

Thus, the stress state of dams, geometrically similar to the Gissarak dam under gravitation forces, with
satisfactory accuracy can be described by a model of plane strain. As for the evaluation of stresses in the
plane of dam site, the study is possible with a spatial model, while the stress state of the Sokh dam and the
ones similar in geometry, must be estimated with a spatial model.

Analysis of the stress state of the above dams has shown that the maximum shear stresses o3 under
vertical gravitational load arise along the lateral boundaries of the dam site and can cause shear and cracks

at the sides. Vertical normal stresses o»2 occur in the central part of the dam base. Maximal (in the modulus)

horizontal stresses o11 appear at the base along the crest; their negative values in the central part indicate
the compression of the central part under the crest, and positive values indicate the heaving of the lower side

of the side slopes at the dam body settlement under its own weight. Positive values of horizontal stresses o33
in the upper part of the sides indicate the possibility of fractures and cracks on the side slopes.
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Thus, a spatial model allows estimating the stress-strain state not only in the cross section, but also in
the dam junction with the gorge, where the danger zones appear.

Further, the possibility of using the models of plane strain for solving specific problems for real dams
should be proved by studying the stress state, taking into account geometric dimensions, structural features
and spatial factors of the structures under consideration.

3.2. Assessment of dynamic characteristics of a dam

Spatial eigenfrequencies and oscillation modes of earth dams considered above, have been studied
further, taking into account the non-uniform structural features.

Figure 3 shows natural modes of oscillations of the Gissarak dam, corresponding to the
eigenfrequencies obtained.

w,=7.9781 rad/sec

Figure 3. Natural modes of oscillations of the Gissarak dam, obtained using the spatial model.

An analysis of spatial eigenfrequencies distribution of the dam indicates the existence of more dense
spectrum in a wider range, that is: @1 =6.7142rad/sec; ap=7.9781 rad/sec; ws=8.3030 rad/sec;
oy =9.2731 rad/sec; s =10.2988 rad/sec; as = 10.4236 rad/sec; «r=10.8966 rad/sec; s =11.0334 rad/sec;
@y = 11.1865 rad/sec; w10 = 11.8026 rad/sec; w11 = 12.0947 rad/sec; w12 = 12.3554 rad/sec;
o3 = 12.4357 rad/sec; 14 = 12.7373 rad/sec; w15 = 12.9691 rad/sec; w16 = 13.1138 rad/sec;
17 = 13.3937 rad/sec; ans = 13.4548 rad/sec; a9 = 14.2052 rad/sec; apo = 14.3668 rad/sec.

This is explained by the fact that different models have different number of degrees of freedom, each of
which makes an additional contribution to the spectrum of fundamental frequencies of natural vibrations. The
frequencies obtained for this dam, reflecting shear and vertical oscillations of the central cross section, are
almost identical in spatial and plane models.

For a spatial model, the shift of the central cross section is the bending of the longitudinal axis of the
model (X3). Subsequent oscillation frequencies of spatial model are the highest forms of bending of longitudinal
axis (X3), not considered by plane model. Therefore, the frequency spectrum in spatial case is denser, since
between the main frequencies there are intermediate ones, reflecting higher modes of bending vibrations of
the longitudinal axis of model (X3).

As for the pattern of oscillations modes, we can note the following. Fundamental modes, reflected by
spatial and plane models, are: the shear of the central section (the first mode); vertical displacements of the
central section (for the plane model this is the second mode); complex deformations of the central section
slope (for the plane model, this is the third and subsequent modes). For a spatial model, all modes, including
mentioned above, are accompanied by a bending in longitudinal axis of the model (a crest) along the horizontal
and vertical axes. For the above modes — these are the main modes of bending, for the subsequent ones —
this is a bending with nodes. The bending of the crest (main one and with nodes) is accompanied by complex
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deformations of the structure slopes, and not only in their central part (central section), but also over the entire
surface. These additional modes, and corresponding frequencies, are not reflected by plane model but fully
reflected by spatial one. However, its use, as noted above, is quite laborious. The choice of a particular model
when considering specific structures should be substantiated not only by the geometry of the object, but also
by the estimated load, its direction and frequency spectrum, which can cause structure oscillations not only of
fundamental mode but also in higher modes not reflected by plane model [32, 33].

The question of how great the longitudinal strain along the axis (X3) is, remains the priority, since the
validity of using a plane model depends on it. If longitudinal displacements under a certain effect are large,
then in this case the use of a plane model is unacceptable, since the possibility of transverse cracks formation
is not taken into account.

To answer the question, it is necessary to consider the problem of unsteady forced oscillations of the
dam under different (in directions) kinematic effects using plane and spatial models and to compare the results
obtained.

4. Conclusions

1. A mathematical model, methods and algorithm for estimating the stress-strain state and dynamic
characteristics of inhomogeneous spatial systems using a spatial model are presented.

2. The stress-strain state and dynamic characteristics of two different earth dams using three-
dimensional models is estimated taking into account actual geometric dimensions and inhomogeneous
features of a structure.

3. An analysis of obtained results on the stress-strain state assessment of earth dams with spatial
models has shown that for some types of dams it is possible to use plane strained models to obtain results
with acceptable accuracy. Nevertheless, in each case, for specific structures, in assessing the stress state of
dams, it is necessary to check the stress state using a spatial model.

4. The use of spatial model makes it possible to identify dangerous zones of the structure (where higher
stresses occur compared to other areas), which could not be identified using a plane model.

5. Analysis of dynamic characteristics of dams with a plane model has revealed a rather dense spectrum
of spatial eigenfrequencies and the identity of fundamental modes of natural oscillations over the cross section
of a dam.

6. The first three fundamental modes for the Gissarak dam are: the displacement of the central section
(the first mode); vertical compression of the section (the second mode); complex deformations of the slopes
of central section (the third mode), etc.

7. For a spatial model, all modes are accompanied by a bending in longitudinal axis (a crest) in different
planes. The bending of the crest is accompanied by complex deformations of the structure slopes, not reflected
by plane model. The eigenfrequencies corresponding to these modes make an additional contribution to the
frequency spectrum, condensing and expanding its range.
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HeOQHOPOAHOCTb, TPYHTOBAs NIOTMHA, HanpsPKeHHO-4eopMUPOBaAHHOE COCTOSIHUE, AMHAMUYecKas
XapakTepucTuka, cobcTBeHHasn YyactoTta u popma konebdaHumm

AHHoTaumaA. OueHKa NPOYHOCTU FPYHTOBLIX MMOTWH, B OCHOBHOM, MPOU3BOAMTCA C UCMOMNb30BaHUEM MIOCKOW
pacyeTHOM CXeMbl, KOTopasi He Bcerga MPMBOAUT K adekBaTHbIM pesynbTataMm. B pgaHHoil paboTe
npeanaraeTcs NPOBECTU OLEHKY Hanps)KeHHOro COCTOSHUSI TPYHTOBbLIX MIIOTMH B TPeXMEPHOMN NoCTaHOBKe.
CrnegoBaTenbHO, ANs OLEHKU HanpsiKeHHO-Ae(POPMUPOBAHHOIO COCTOSIHUS U AMHAaMUYECKMNX XapaKTepPUCTUK
TPYHTOBbIX MSIOTWH CTPOSITCS COOTBETCTBYIOLLME MaTEMaTUYECKME MOZENN, MeToamKa U anroputm. B ocHoBy
pa3paboTaHHOW METOAMKM NPU PELLIEHUN KOHKPETHbIX 3a4a4y A4Sl NPOCTPaHCTBEHHOTO COOPYXKEHUS 3ar0XKeH
METO[ KOHEeYHbIX 3rieMeHToB, MeTog [aycca (unmM MeTon KBagpaTHOrO KOpHs) M metod Mionnepa.
J[locTOBEpPHOCTb MONyYeHHbIX Pe3yrnbTaToB MPOBEpeHa pelleHueM psiga TecToBbiX 3agay. C MOMOLLb
pa3paboTaHHOW MeTOAMKU WCCreaoBaHbl HanpshkeHHO-O4edOopMUMPOBaHHOE COCTOSIHME M AMHAMUYecKue
XapakTepuctukn nccapakckoh 1 COXCKOW TpyHTOBbIX MMOTMH. Ha ocHoBe pesynbTaToB MccregoBaHUst
NnokasaHo, YTO AONA HEeKOTOPbIX TUMOB TPYHTOBLIX MMOTWH, NPU NpPeaBapuUTENibHON OLEHKe HanpshKeHHOro
COCTOSIHUA U OMHAMUYECKUX XapaKTePUCTMK COOPYXKEHWIl, BO3MOXHO MCMONb3oBaHWE  MIOCKO-
AecdopMupyemort Modenu pacdeTa. [poBefdeHHble WCCredoBaHMs Mokasanu, 4Yto Ana obecneveHust
TpebyeMoi TOYHOCTU MPU OLIEHKE HamnpshHKeHHOro COCTOSHUA U OMHAMUYECKUX XapaKTePUCTUK COXHbIX
HEOAHOPOAHbLIX MPOCTPAHCTBEHHbIX CUCTEM (T.€. TPYHTOBbLIX MAOTMH) HEOOXOAMMO MPOBOAUTL pPacyeThbl C
UCMOMb30BaHNEM TpexMepHol Mopenu. lMonyyeHHble B pesynbTaTe UccliefoBaHWui daHHble MO3BONWMU
BbISIBUTb HEKOTOPbIE OCOGEHHOCTU HaMpPSHKEHHOIO COCTOSIHUSA B NMPOCTPAHCTBEHHOM Crlydae, yKasblBalolime
Ha BO3HMKAIOLWIME OMACHble Y4YacTKM C HauOOMNbLUMMK HanpsbkeHWsIMM, a Takke W3y4uTb XapakTep
cobCcTBEHHbIX kornebaHuii, KoTopble HEBO3MOXHO ONMcaTb UCMONb30BAHMEM MITOCKOW MOZENN.
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