Magazine of Civil Engineering. 2019. 91(7). Pp. 80-97
W HKeHepHO-CTPOHTENbHBIN KypHai. 2019. Ne 7(91). C. 80-97

Magazine of Civil Engineering ISSN
207170305

journal homepage: http://engstroy.spbstu.ru/

DOI: 10.18720/MCE.91.8

Equilibrium finite elements
for plane problems of the elasticity theory

Yu.Ya. Tyukalov
Vyatka State University, Kirov, Russia
* E—mail: yutvgu@mail.ru

Keywords: stress approximations, additional energy, finite element method, plane problem

Abstract. The work is devoted to the finite elements construction, based on the stresses approximation, for
solving plane problems of the elasticity theory. Such elements are alternative to existing finite elements
obtained using displacements approximation. Alternative solutions allow more accurate assessment of the
structure stress-strain state. The proposed method for constructing finite elements is based on the principles
of minimum additional energy and possible displacements. Various stress approximation variants are
considered. All approximations variants satisfy the differential equilibrium equations for the case of no
distributed load. A comparison is made of the solutions which are obtained by the proposed method with
analytical solutions for the ring and the bent beam. The considered stress approximation variants show for
test problems good accuracy and convergence, when we grind finite elements grid. It is shown that the best
accuracy in calculating stresses and displacements is provided by the finite element with piecewise constant
approximations of stresses. In addition, such finite element ensures the displacements convergence to exact
values from above. Other finite element variants may be convenient for calculating branched and combined
structures. The proposed equilibrium finite elements can be used to more accurately determine the stresses
in the calculated structures. The proposed technique can be used to build volumetric finite elements.

1. Introduction

To the basics of the finite element method large number of fundamental studies are devoted, for
example papers [1, 2]. These present various variational principles, based on which, finite element solutions
can be constructed for the wide range of structural design problems. Alternative principles of minimum
potential energy and additional energy are considered. In addition, various variants of hybrid and mixed
variational principles are studied. It is noted that the solutions based on the principle of minimum potential
energy make it possible to obtain, under certain conditions, the lower limit of displacements, and those
obtained using the principle of additional energy can provide the upper limit of displacements. It is obvious
that by applying various approximations for displacements in the area of finite element, we thereby forcefully
reduce the number of system freedom degrees, which leads to an increase its rigidity [3]. Therefore, the values
of displacements determined by the finite element method in displacements will always be less of accurate
values. In addition, as rule, the approximations used for displacements do not ensure the deformations
continuity, and hence the stresses continuity, along the finite element boundaries. This leads to the
appearance of stress field discontinuities along the finite element boundaries.

The finite element method is successfully used to solve various geometrically and physically nonlinear
problems. It successfully used for calculating rods, plates, shells and volume problems of the elasticity theory
[4, 5]. The finite element method is widely used to solve problems with geometric nonlinearity, shear
deformations and for calculation thin-walled structures. The finite element method in displacements is the
universal method for solving various problems of the construction’s stability and dynamics [6, 7].

The papers [8, 9] are devoted to mixed variants of the finite element method. In mixed methods,
approximations of both displacements and stresses (forces) are used. In [9], to approximate displacements
and stresses, low-order functions are used. Then two numerical examples are given to demonstrate the
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stability and efficiency of the proposed approach. The solution obtained by the mixed method, when crushing
the finite element's grid, can approach the exact solution both from the bottom and from the top and does not
give any lower or upper boundaries of displacements [10, 11].

As an alternative to the finite element method in displacements, for certain structure’s types, numerical
methods are used, which based on the decomposition of the displacement function into trigonometric series
[12,13]. Such methods allow obtaining high-precision solutions for the certain class of problems and can use
to testing of other numerical methods.

Also, the boundary element method which use boundary displacement approximations is applied to
calculate various constructions [14, 15]. In [16], solutions of three-dimensional problems of the elasticity theory
near the border are investigated using modern computational technologies. In [17] for the analysis of
axisymmetric elastic problems, the new hybrid finite element method was proposed. This technique uses
fundamental solutions in combination with boundary integration method. The formulation uses two independent
displacement fields. One field is used within the region of the element and the second is used on the element
border, that combines the advantages of the traditional methods of finite and boundary elements. In [18], the
Galerkin’s method in the weak form is used to reduce the approximating function orders.

In [19, 20], finite element solutions were developed based on stress (force) approximations. At the same
time, to build the solution the combination of principles of the minimum additional energy and the possible
displacements was used. Such approach makes it possible to find solutions that are alternative of solutions
obtained by the finite element method in displacements. It is known, the finite element method in
displacements gives an approximate and one-sided solution of the problem. Therefore, despite the great
success in using the finite element method in displacements, the search and development of additional, and
alternative solutions are relevant. Alternative solutions make it possible to obtain the necessary assessment
of the solutions accuracy, which obtained by the finite element method in displacements, and thus ensure the
adoption of more reliable design solutions. In [21, 22], this approach is used to solve stability problems and
free oscillations of rod systems.

This work aim is to develop the method to solve the flat elasticity problems, which is based on various
variants of stress approximations at finite element region. In this case, it is supposed to use various options
for approximating stresses that satisfy homogeneous differential equilibrium equations in the finite element
region. The method using stress approximations is an alternative to the standard, widely used, finite element
method, which is based on the displacement approximations. The flat elasticity theory problems are
encountered at the calculations of wide range of the modern building structures. Therefore, the improvement
of their solution methods remains the urgent task.

2. Methods

The solution of the theory elasticity problems in stresses can be obtained based on the additional energy
functional [1, 2]:
1 - — .
H":E”{G}T[E] 1{0}dQ—I{T}T {A}dS — min. (1)

{A_} is the vector given displacements of nodes;

{T} is the vector boundary forces;
S is the boundary surface, on which the displacement nodes are given;

(2is the subject area;
T .
{G} = (GX o, 7 Xy) is the stresses vector;

[E] is the material stiffness matrix.

We shall obtain the necessary relations for an arbitrary quadrangular finite element (Figure 1). In Figure
1, points A, B, C, D are located on the middles of corresponding sides.

To approximate stresses over the finite element region, we shall use functions that satisfy homogeneous
differential equilibrium equations for the plane elasticity theory problem:

or oo, Ot
0o, +—2 =0, Y0 )

OX oy oy OX
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Figure 1. Converting an arbitrary quadrangular finite element into the square.
a) areas with constant stresses for variant 4;
b) points 1, 2 on the axes are the points for numerical integration on Gauss.

To compare the solutions, we shall use four variants of approximating functions, which are presented
in Table 1.

Table 1. Variants of the approximating functions for the stresses.

Variant Ox Oy Xy
1 a, +a,Y+agX a, +a:x+a,y a;—azy—a,X
2 a,+a,y a, +a5X a,
3 a, +agX a,+a,y a; —ay —a,X
4 o (X y)e Oyir (x,y)e 2 Tyyio (x,y)e

Variants 2 and 3 are obtained from variant 1 by eliminating some unknown parameters. All the approximation
functions satisfy equations (2). In variants 1-3, the unknown parameters @, <+ a, are independent for each finite
element; therefore, the stress fields will have discontinuities along the finite elements’ boundaries. Variant 4 uses
piecewise constant functions &, ;, 0y, 7, ; that are nodal stress values. Thus, stresses are approximated by

constant functions in each region (2, + (2, of the finite element (Figure 1a). Such stress fields are continuous at

nodes and along the finite elements boundaries but have discontinuities inside the elements. Such approximations
for rectangular and triangular finite elements are used in [19-22].

For the stress fields to satisfy the equilibrium equations for the entire subject area under the given load
action, we construct the equilibrium equations for finite element grid nodes. For that we shall use the possible
displacements principle. The unit displacements along the coordinate axes (Figure 2) are taken as possible
displacements. In this case, only finite elements that are adjacent to the node are will deformed.

AY 4 -

) )

X X

a) b)
Figure 2. Possible displacements of node i.

Such equilibrium equations can be written as follows:

[y

{Ci,X}T {O'i}+f_fyx =0, ie

Xl
T _ 3
{Ci,y} {O'i}+ffyy =0, ie Ey.
{a.} is the unknown parameters vector of stresses for finite elements that are adjacent to node i;

- Ey are the sets of nodes that have loose displacements along the X and Y axes, respectively;

—
-
—

F_>i,x’ F_)i,y are the generalized forces corresponding to the external loads potential on single possible

displacements of the node i, which are directed along the axes X, Y;
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i,X i,y
equilibrium equations of node i.

{C— }, {C— } are the vectors containing coefficients for unknown nodal stress parameters in the

Using any variant of the approximating functions (Table 1), the expression of the functional (1), when
the given displacements are absent, can be written in the following matrix form:

I :%{G}T [D]{o) - min. @

The matrix [D] is the flexibility matrix of the entire system. Thus, we have obtained the problem of the
guadratic function minimizing (4) with constraints, which are represented as the system of linear algebraic equations
(3). Using for solving the Lagrange's multipliers method, we shall get the following extended functional:

IT° =%{G}T [D]{c} +ijxyyzi65j U ({Ci,,-}T o)+ P, ) s min. "

Uij is the displacement of node 1 in direction j. With this solution, additional unknowns appear in the
form of nodes displacements. But we must accent, that displacements fields approximations in the finite
element region are not used.

Expression (5) can be represented in the more convenient to solve form:
1 .
[ =—{o} [Dl{o} +{u}’ ({F}-[L}{o}) - min (©)
{u} is the global vector of unknown nodal displacements;

{F} is the vector whose elements are equal to the works of external forces on the corresponding single
displacements;

[L] is the “equilibrium” matrix, the rows of which are formed from the corresponding vectors {Ci }.

If we equate to zero the derivatives with respect to the vectors {o} and {u}, we obtain the following

algebraic equations system: ; 0
-[FL]] _{51] {ga}}}{[ﬂ} !

The first matrix equation in (7) is the strain compatibility equations, which are written in stresses. The
second matrix equation is the equilibrium equations of nodes. The matrix is block-diagonal form for any
approximation variant from Table 1 and is easily reversible. Therefore, the system of equations (7) is
conveniently solved in the following sequence:

[K]=[LI[O] L] ®
[Kup={F}, ©)
(o} ~[OT"[L] fu}. @0

Thus, solving the algebraic equations system (9), we obtain the nodal displacements values {u}, and
then we shall calculate the stresses parameters vector { o} from (10).

Next, we shall obtain the necessary expressions for [D], [L], [F]. For this we shall use variants stresses
approximations, which are presented in Table 1.

2.1. Variant of approximation of stresses 1.
Let us introduce the notation for the unknown parameters vector of the finite element K

T . . .
{gk} :(al a a3 a a5 a4 a7) and for the stress approximations matrix

100y 0 x O
[H]: 0100 x 0 vy| (1)
0 01 00 -y —x
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Then, the stresses vector of finite element K

O-X
{ol=10, r=[Hllo} (12)
Tyy
Material stiffness matrix
1 —u 0
[E]*lzi —u 1 0 | (13)

“lo o 201+ 1)

E is the material elasticity modulus;
t is the plate thickness;

M is the Poisson's coefficient.

The finite element flexibility matrix is defined by the following expression:

[Dk]zﬂ[H]T[E]‘l[H]dQ. (14)

To obtain the solution and calculate the integral (14), we shall use the well-known transformation of the
arbitrary quadrilateral element (Figure 1a) to the square element (Figure 1b). Such coordinate transformation
can be written in the following form:

X:Z;Ni (fvﬂ)'xi,ka yZZ?:lNi (é:vn)'yi,k’ N; (fvﬂ)zi(l"‘fif)(l“?iﬂ)- (15)

X Yik are the finite element nodes coordinates in the global coordinate system. The functions Ni(&,
n7) will later be used to specify the possible displacements over the finite element region (Figure 2). Therefore

it is necessary to calculate the derivatives Ni(&, 77) with respect to the coordinates X and .

For partial derivatives of the function N; (f, 77) the following expressions can be written:

ON; N, ox oNi oy N, _oN ox N, oy
0F X oF oy 0 on  ox on oy on’

Index i denotes the local number node of the finite element (Figure 1a). The equations (16) may be
written in the following matrix form:

N | ox oy [N, x ¥

(16)

o0& o0& 0& || ox o0& o0&
A x
on on on || on on on

Using relations (15), we shall obtain the expressions of the matrix [J] elements:

b= 23 SO M) - 1) )]

Jo = gg ZM = gL (a0 )+ o) (v v )
2yt S A0 6) )+ (1) ) .

-2y ““ff') e [0~ )+ (0 E) a2 )]
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From relation (17), we obtain the expressions of the necessary derivatives:

N N
OX _ [ ]_1 aé:
o oN
on on
Matrix elements have the following expressions:
J
detl=J,,J,, —J;nJd0q, =22
1922 = J1pdo, by det)

Using the expression (19) and (15), we get

oN; & (1+mm)

by, =

8xI =bu 4

N, _ &(L+mm)
— 21

oy 4

HE

b, by,
b21 b22 .

—Ji _ I =£.
det)’ 21 detd]’ % det]
n (1+&S
+b.|.2¥’
(14 £E
b, 7 :fé.)_

Using the introduced coordinate transformation, the integral (14) can be written as follows:

(D)= [[[HT [E]*[H]d2=[" [ [H] [E]*[H] detydndc.

To determine the matrix (22) elements, it is convenient to precompute the following integrals:

y=[ [ dendpde=A i,=] [ x-detidnde,
= [ y-detidpde, iy = [ x-detidpde,

o= [ xy-dewdnds, ig=] [ y? deidrac.

Integrals (23) are calculated numerically using the four-point Gauss’ formula. The following integration
points and weight coefficients were taken in the calculations:

$q1 =11 =10.339981, W, = 0.652145,
gg,Z = 779,2 = i0861136, Wz =0.347855.

Using expressions (22) and (23), we get:

A

o'-

m|~

—u-A
A

0
0
2(1+ p)A

symmetrically

)

0

Iy

Iy —p-ig
Al I3
=21+ p) 14 =21+ )1,
Is —H-lg
—H-ly Is
iy + 201+ )i (2+4) s
g +2(1+ ) -1y |

(19)

(20)

(21)

(22)

(23)

(24)

(25)

The global flexibility matrix for the entire system [D] is formed from matrices flexibility [D¥] of finite

elements.

To calculate matrix [L] elements we use the possible node displacement du; of the finite element (Figure

2) along the X axis:

Trokasos 0. 1.

B =Ny (&) = 5 (L+ ) (L)

(26)
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Possible deformations that occur in the finite element are determined using expressions (21).

i 1+ 1+
58)( — aaNl bl é:I ( 7777!) b12 Ui ( §§| ) ’
X
. (1+7nn 1+ &S
57y oN; _ b, & ( 7777.)+b22 77.( &)
oy 4 4
We introduce the notation of the possible deformations vector of the finite element k
(1+nn (14 EE
bllé.( 7777.)+b12 7 (1+84)
58)( 4 4
{66} =1 e, p = 0
0 - (1+nn. (14 &&,
Tl |, & 47777. ) o, 455.)

The work of internal forces is
1 01 T
suf, =t|[ (se o) dQ = tjlljll (e} [H]{oy }detidndé = {ciﬁx} (o).
o
In (29) the notation is entered:

(i) =t [ {06 [H]detsdnde,

(27)

(28)

(29)

(30)

To calculate the vector {Cikx} elements it is convenient to pre-compute numerically. For that we use

the four-point Gauss’ formula, the following integrals:

jj aN'detJdndg’ i = tj j —x deldnds, o; = tj j —y detddndé,

—jj 'detJdnd§ ;i = tj j —x detldndé, ayy; = tj j —y detddndé,

Using (11), (28), (30) and (31) we get

{Cilfx}T :(%,i 0 ap; oy 0 (agy5—0y) _a2x,i)'

Next, we consider the possible displacement of finite element node along the Y axis

8, = Ny (&) = 7 (1+ &) (L),

The possible deformations that occur in the finite element are determined using expressions (21).

ON; i (1+777; i (145
&(1 (1 -
57y - N _p, & ( +7777.)+b12 7 ( 155.).

Performing similar transformations, which are given above, we shall get:

éUik,y = {Cilfy }T {o},

{Cilfy}T :<0 di 05 0 ayy —oyy; (o +a2y,i))'

Tyukalov, Yu.Ya.
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(33)

(34)

(35)

(36)
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We combine the internal force works at the possible displacements for all finite element nodes into the
vector

(sur)' =(auf, oUE, oUk, oUk, oUk, Uk, Uk, auk) (37)
Rows (32) and (36) are combined into the matrix
i o1 0 ay My 0 (0‘1x1 — 03 y,l) —Oox1 ]
0 oy oy 0 0y —04y1 (—alx1+a2y1)
P 0 Qro Oqyo 0 (alx,Z & y,z) 0oy 2
[ Lk } _ 0 oy, o 0 0y, —Oy> (—ogxp +05y2) | (38)
oz 0 ay My3 0 (alx,3 & y,3) 093
0 a3 s 0 a0y —04y3 (—og3 +02y3)
oy 0 oy, Kya 0 (ogya—a, y,4) —Ooxa
0 oy oy 0 any ~ya (=0 +azy4) |

Using (37) and (38) we can write
{ouk}=[L]{o"}. (39)
The matrix [L] is formed from the finite element matrices [LX].

. T .
Since unknown stresses parameters {Gk} :(a1 a a; a4 a g4 a7) are independent for

finite elements, the formation of the resolving equations system can be performed in the same way as it is done for
the finite element method in displacements. In this case, for each finite element we can form the matrix

.
B¢ =[] D] ] (40)
Then, from the matrices [BX], in accordance with the node numbering, the matrix [K] is formed for the

equations system (9). The matrix [Bk] is an analogue of the finite element stiffness matrix.

To form vector {F}, it is necessary to calculate the work of loads distributed over the finite element at
possible node displacements:

11

oV = [ afoud@ = [ [ N (£n)-detidpdé = P, "
e -1-1
11

oV, = [ akowde = [ [ qhN; (&) -detddpde = P .
N -1-1

To calculate (41), (42) for each finite element node (i = 1, 2, 3, 4), the Gauss’ numerical integration
procedure is used. In accordance with the nodes numbering forces ka’i and Py'fi are summed with the
corresponding elements of the vector {F}. The concentrated in the nodes forces Px, Py are also added to the
elements of the vector {F}.

2.2. Variants of approximation of stresses 2 and 3

All solving equations for these variants coincide with the equations for variant 1. It is necessary to simply
exclude some columns of the matrices [Lk], which is corresponding of the excluded parameters, and the same
rows and columns of the matrices [D¥] (see Table 1).

2.3. Variant of approximation of stresses 4

As unknown parameters the stresses values in the nodes of the finite element grid ox,i, Oy, Ty, are
used directly. In this case the stresses are constant values in each of the finite element regions (2, + (2, and

Trokasos 0. 1.
87



Magazine of Civil Engineering, 91(7), 2019

equal of the corresponding nodal stresses (Figure 1a). The unknown stresses parameters vector of finite
element will have the following form:

-

{O-k} :(Ux,l O-y,l z-xy,l Ux,z Gy,z Txy,Z O-x,3 O-y,3 z-xy,3 0x,4 0y,4 Txy,4)' (43)
To simplify the expressions, we introduce auxiliary functions
L (xy)e

wi (X y)= : (44)

Then the stress approximations matrix at the finite element region will have the simple diagonal form:

Y1
Vi
L4
¥
V2
Hl= Va2 45
[H] Vs (45)
Vs
Vs
Wy
Ya
L Va |
Calculating the integral (14), we obtain the obvious expression for the block-diagonal matrix
-1
A[E] 1
|: Dk :| — AZ [ E] (46)

+ are the areas of the respective regions (2, +2,; [E ~Lis the material flexibility matrix (13). To
1

} and {CF

determine elements of the vectors {Ck iy

i x }, in accordance with (30), it is necessary to calculate the

following integrals:

x _ o [tON; y _oft [ON; Coi
B —t.l._lj._lgl//j detd dpd&, A _tj_lj_lawj detidnde, i, j=1,2,3,4.
In calculating integrals (47), depending on the function 1, only the integration points (¢g, 779) from the
corresponding area of the square are used, in the one where ; = 1 (see Table 2).

(47)

Table 2. Integration points.

Y &g Mg

v -0.339981 -0.339981
-0.861136 -0.861136

v +0.339981 —0.339981
+0.861136 —0.861136

v +0.339981 +0.339981
+0.861136 +0.861136

" -0.339981 +0.339981
-0.861136 +0.861136

Thus, when calculating integrals (47), four integration points are used (Figure 1b). Using the notation

introduced in (47), we obtain:

(Ch) =(Bn 0 BY By O By Bs O BL B 0 BL),

{Cilfy}T :(0 ﬂi%ll ﬁi),(l 0 ﬁi?lz ﬂi),(z 0 ﬂil,ls /Bi),(S 0 ﬁi),/4 ﬁi),(4)-

Tyukalov, Yu.Ya.
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The matrix [L¥] consists of lines (48):

ﬂ 1),(1 O ﬁ l),ll ﬂ l),(2 0 ﬂ 1%/2 ﬁ l),(3 O ﬂ 1),l3 ﬁ 1),(4 O ﬂ 1),l4

O ﬂ 13,11 ﬁ l),(l O IB 1),/2 ﬂ 1),(2 O ﬁ 1),/3 ﬁ 1),(3 O ﬁ 1),/4 ﬂ 1),(4
Boi O By Boy O By Pos O By Poy O B,
[Lk] |0 By Boys 0 By Bos O Bz Boz O Bla Bra | (49)
Bsa O By Bsp O By Bis O By Bsa O B3

0 By B O By Bsp O By Bis 0 By Paa
Bri O Biy Bin O Biy Bas O Bls Pas 0 Bl
0 Bl Bi O Bl Bio 0 Bls Bis 0 Bls Pia]

The global [L] matrix is formed from the all finite elements matrices [L¥]. Note that in this case the

direct matrix [K] formation, by calculating the matrix [B¥] (see (40)) for each finite element, is impossible. The
expressions of the load’s potential (41), (42) don't depend on the stresses approximations types.

Note that the width of the nonzero elements tape for the matrix [K] is approximately two times the tape
width of the equations system for the finite element method in displacements and the matrix [K] tape width
for variants of stresses approximations 1-3.

3. Results and Discussion

An analytical solution for ring loaded with concentrated forces is given in [23]. Due to symmetry, a
quarter of the ring was calculated. That is shown in Figure 3a. The ring has an inner radius r and an outer
radius R = 2 - r. To solve the problem, the following ring parameters were taken: E = 10 000 kN/m2,
41 =0.3, r=3m, P=20kN. In nodes are along the line AB, we excluded displacements which directed along
the X axis, in nodes are along line CD, we excluded displacements which directed along the Y axis.

Pi2

A5 B

c D >

"] D
a) b)

Figure 3. A quarter of the ring (the grid of 5x10 finite elements).
a) concentrated force P; b) uniform internal pressure g.

Table 3 shows the displacements values of point C for different finite element grids. The values in the
Table 3 show the displacements convergence rapid. For the case piecewise constant approximation of
stresses (variant 4), there is strict displacements convergence to the exact value from above.

Table 3. Displacement 100U¢, m (Figure 3a).
Variants of the stress approximations

Grid 1 2 3 4
5x10 0.60274 0.61341 0.62238 0.66561
1020 0.61633 0.61902 0.62146 0.63407
20x40 0.61993 0.62061 0.62123 0.62461
30x60 0.62061 0.62091 0.62119 0.62272

In [23], the analytically calculate stresses values are given for nodes which lay at the lines AB and CD
(Figure 3a). Stress values are given in dimensionless form:

_ 7R
xy) = 5p Txy (50)

Trokasos 0. 1.
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For the solutions comparison, the stresses values at the indicated points, which were obtained for the finite
element mesh 10x20, are given in Tables 4 and 5. Stresses were calculated for four stress approximations variants.
For approximations 1-3, the stresses are discontinuous along the element boundaries. Therefore, in Table 4 for the
grid internal nodes, two values are given. These values were calculated in the two finite elements which are adjoining
at the node. In each finite element, stresses were calculated for the corresponding node point. To do this, node
coordinates were substituted into the stress expressions (Table 1). For the variant 4, the stresses are calculated
directly for the grid nodes, therefore one value was presented.

Table 4. Stresses Ey at nodes along the CD line.

Variant of approximations

Node 1 2 3 2 Value of [23]
1-C -8.833 -8.819 ~7.690 -8.391 28.042
2 6242 e 769 ]
3 Zesto 4483 5518
4 108 o e 3163 -
> :i:gjg jﬁggg :igig —-2.052 -2.012
o dm ey, :
! :8é;g :83%2 _00..258704 -0.133 -0.113
8 8:333 82323 2:332 0.715 _
9 501 1508 a5 1478 La77
10 2234 2202 2505 2233 )
11-D 2.842 2.903 2.563 2.798 2.940

Table 5. Stresses ¢, at nodes along the CD line.

Variant of approximations

Node 1 > 3 2 Value of [23]
1-A 9.818 9.807 8.144 9.399 10.147
2 5080 607 5 066 5216 )
? 3778 3797 e 4200 2002
¢ 2201 2 231 1801 2421 )
> e 037 0740 1.299 124
° 8:222 8:352 _06_724193 0.532 -
! Zo'380 o049 oo ~0.546 _0.594
8 jggg Zij;fi j:gﬁ -0.433 _
9 i§;§§§ :g:g;g :é:g;é ~3.134 2185
10 :g:cngg iﬁj%? :g:i;g -5.852 -
11-B ~13.562 ~15.832 -3.187 ~19.300 _3.788

The results analysis, which is given in Tables 3-5, shows that less accurate stresses values were
obtained for the third stress approximation variant. The stress values of the first and second variants are close,
but the first variant gives closer stress values to the analytical solution at the extreme nodes. In intermediate
nodes, the 1-3 approximation variants have discontinuities in the stresses, therefore, the deviations from the
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analytical solution are more significant compared with the fourth variant. To improve the results accuracy for
variants 1-3, it is necessary to calculate the average stresses values for intermediate grid nodes. The fourth
variant of stresses approximations allows one to obtain stresses directly at the grid nodes and ensures the
displacements convergence to exact values from above. It should be noted that point B is the point of
singularity. At this node, the stresses tend to infinity, so it is impossible to compare values for this point. But it
is obvious that the analytical solution [23] for this point does not provide the drastic change of the stress’s

values. Therefore, the value G, g =—3.788 can't serve as the reference of comparison with other solutions.

In addition, the stress value Exvg =—2.185 in the neighboring node is also unreliable, that is due to the

inaccuracy of the analytical solution in the singularity zone. Note that the solutions of the approximation’s
variants 1, 2 and 4 more accurately represent the stresses change at the singularity zone and allow us to
obtain more accurate and consistent stress values.

When using the finite element method in displacements, usually, the stresses are determined not at the
nodal points, but at the finite element centers. If we want to improve the accuracy of their values, the finite
element grid should be grinding. Tables 6—-8 show the stresses at the finite element centers, which is adjacent
to points C, D and A, for the considered stresses approximations variants, as well as those obtained using
the LIRA-SAPR program. For variant 4, the stress values are given directly for the nodes.

Table 6. Stress @, at the finite element closest to point C. Analytical value &, = -8.942.

y

Variant of approximations

Grid LIRA-SAPR
1 2 3 4

5x10 —-6.431 -8.437 —6.629 -8.078 —6.120

10x20 —7.559 -8.819 —7.628 -8.391 —7.449

20x40 —8.199 —8.908 -8.219 -8.618 -8.167

30x60 -8.425 -8.917 -8.434 —8.698 -8.411

Table 7. Stress &, at the finite element closest to point D. Analytical value &, = 2.940.

. Variant of approximations

Grid LIRA-SAPR
1 2 3 4

5x10 2.129 2.869 2.267 2.734 2.146

10x20 2.549 2.903 2.589 2.798 2.547

20x40 2.745 2.917 2.755 2.826 2.744

30x60 2.807 2.921 2.812 2.888 2.807

Table 8. Stress &, in the finite element closest to point A. Analytical value ¢, =10.147.

Variant of approximations

Grid LIRA-SAPR
1 2 3 4

5x10 6.301 6.359 6.501 8.977 5.850

10x20 7.967 7.975 8.098 9.399 7.811

20x40 8.980 8.980 9.007 9.679 8.931

30x60 9.352 9.351 9.365 9.803 9.329

The values given in Tables 6—8 show that approximation variants 2 and 4 provide the greatest accuracy.
At the smallest grid, for point A by 5 % more accurate stresses values are calculated by the fourth version of
approximations, and for points C and D by 2-3 % the second variant is more accurate. The stresses values
obtained by the LIRA-SAPR program are less accurate compared to variants 2 and 4, by about 5-6 %, and
their values are smaller.

The analytical solution for ring loaded with uniform internal pressure (Figure 3b) is given in [15]. For the
CD line, this solution can be written as follows:

2 2 2 2 2 2

qr R qr R qrox(1+ ) R
—|1-— oy =——|1+— |7, =00 U=———|1-2u+—|. 51
2 YT RZ_ 2 N R E(Rz—rz) H 2 (51)

To estimate the proposed method accuracy, quarter-ring calculations were performed (Figure 3b) with
different finite element meshes for the stress approximation variants 1-4, as well as using the LIRA-SAPR

program. The following ring parameters were used for calculations: E = 10 000 kN/m2, #=0.3, r=3m, (=
10 kN/m.

o, =
R2 _r2
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Table 9. Displacement 100uUc, m (Figure 3b).
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Variant of approximations

Grid LIRA-SAPR
1 2 3 4

5x10 0.5893 0.5925 0.5891 0.5943 0.5859

10x20 0.5898 0.5907 0.5897 0.5913 0.5890

20x40 0.5900 0.5902 0.5899 0.5903 0.5897

30x60 0.5900 0.5901 0.5900 0.5902 0.5900

Exact value 0.5720

The displacements of point C for the four stresses approximation variants are given in Table 9. All
variants show good accuracy and fast convergence of the displacement value. With the grid of 30x60, the
solutions practically coincide for all the considered variants. Variants 2 and 4 demonstrate convergence to the
exact value from above.

Table 10. Stresses at points C and B (Figure 3b) for various approximation variants.

Grid Variant Oy CH kN/m?2 Oyco kN/m?2 OyB kN/m?
node f. e. node f. e. node f.e.
5x10 1 —-8.040 —7.598 16.919 14.383 6.580 7.004
10x20 -8.961 -8.737 16.887 15.440 6.629 6.834
20x40 -9.463 -9.352 16.804 16.028 6.650 6.750
30x60 -9.637 -9.354 16.765 16.235 6.656 6.722
5x10 2 —7.808 —7.668 16.572 14.252 6.559 7.091
10x20 -8.794 -8.754 16.819 15.391 6.616 6.859
20x40 —9.366 -9.355 16.802 16.013 6.642 6.757
30x60 -9.570 —9.565 16.771 16.228 6.650 6.725
5x10 3 -8.233 —7.605 14.739 14.480 7.030 6.948
10x20 -9.102 -8.743 15.546 15.478 6.837 6.818
20x40 —9.546 -9.354 16.058 16.040 6.750 6.746
30x60 -9.698 —9.565 16.233 16.241 6.722 6.720
5x10 4 -9.427 15.874 6.891
10x20 -9.875 16.079 6.807
20x40 -9.967 16.318 6.728
30x60 -9.985 16.420 6.706
5x10 LIRA- —7.595 14.013 6.934
10x20 SAPR -8.739 15.325 6.817
20x40 -9.352 15.996 6.746
30x60 —9.569 16.224 6.722
Exact value -10 6.6667

The stresses at points B and C for different finite element meshes are given in Table 10. The stresses for
approximations 1-3 were determined twice. The first value (title column is “f. .”) is the stresses at the center of
the finite element, which is adjacent to the corresponding point. The second value (title column is “node”) is the
stresses were determined by substituting the node coordinates into the expression for the stress approximation
functions (see Table 1). Comparison of the obtained results with exact values shows that the fourth variant has
the best accuracy. The remaining variants have similar stresses values. With the greatest error, approximately
2.7 %, the stress values were calculated of third approximation variant and according to the LIRA-SCAD
program. Of course, the stress values calculated for the nodes are more accurate.
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Also, calculations were carried out of hinged supported beam on the concentrated force action. Figure 4
shows half of the beam. The following parameters were adopted: span is 4 m, section height is h = 1 m, section

width is b = 1.0 m, E = 10 000 kN/m2, 1 = 0.3, P = 10 kN. The book [23] provides analytical solutions for
stresses in sections which is located near the concentrated force application point. The stresses values are

presented in the following form:
2P 2P
Oy =Oyp T By (Tj! Oy = ﬂy (Tj (52)

Ox,b is the stress which was calculated by the beam theory in accordance with the Kirchhoff’s hypothesis.
The stresses values calculated in accordance with (52) for points 1-4 are given in Table 11.

Table 11. Analytical solution for the beam [23].

Point x Ox, kKN/m? Yoy Oy, kN/m?
1 0.428 —20.44 -1.230 —24.6
2 0.121 2.42 —0.456 -9.12
3 -0.136 27.28 —0.145 —-2.90
4 -0.133 57.32 0 0
O (&) = [e) O,
100 100 - ‘ 100 10
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Figure 5. Stresses ok at the finite element centers, which lay on line 1-4,
in the beam middle section (Figure 4). The blue line is the analytical solution.
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Figure 6. Stresses oy at the finite element centers, which lay on line 1-4,
in the beam middle section (Figure 4). The blue line is the analytical solution.

The Figures 5-6 present the solutions for the considered stresses approximations variants, when was
using the rather coarse 10x20 grid. The obtained solutions are in good agreement with the analytical solution.
The fourth stresses approximations variant which use the piecewise constant functions allows to obtain the
most accurate solutions for stresses. For variants 1-3, the greatest difference from the analytical solution is
observed at point 1 which is closest to the point of concentrated force application and is the singularity point.
Table 12 shows the obtained by the proposed methods stresses values.

Table 12. Stresses at point 1 (Figures 5-6).

Variant of approximations

Stress Exact value
1 2 3
Ox, KN/m? —22.58 —-22.67 -23.91 —-20.44
Oy, kN/m? -21.09 -21.10 -21.03 —-24.60

As in the previous examples, the approximation variants 1 and 2 provide closer to exact stresses values

(Table 12). The stresses ox differ from the exact ones by about 11 %, and the stresses oy — by 14 %. Note

that the solution of variant 4 practically coincides with the analytical solution at all points which lay along the
height of the section.
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In [1], algorithm the stiffness matrix constructing of rectangular finite element, which was based on the
second stresses approximations variant, is considered. To build the stiffness matrix at first the strains are
expressed through the stresses. Then the displacement functions are determined by integrating the
deformations expressions. As a result, the displacements expressions turn out to be dependent on the
transverse deformations coefficient. It is noted that for such element the inter-element displacements continuity
is not provided. On the example of the cantilever beam calculation, it is shown that this element provides fast
displacements convergence to the exact solution.

The approach proposed in this paper allows us to develop various equilibrium finite elements which are
based on the fundamental principles of the additional energy minimum and possible displacements. These
elements can be used for plane theory elasticity problems. The proposed method is based on stresses fields
approximations. The considered stresses approximations variants showed good accuracy and convergence
for test problems, when we grind the finite element grid. The best accuracy is demonstrated by stresses
approximations variants 4, 1 and 2.

4. Conclusion

1. The method is proposed for constructing equilibrium arbitrary quadrangular finite elements for solving
plane problems in the elasticity theory. The technique is based on the principles of additional energy minimum
and possible displacements and it provides to use the necessary approximations of stresses.

2. Comparison of the solutions which were obtained by the proposed method with analytical solutions
for the ring and the bent beam is performed. The best accuracy is provided by the variant which use piecewise
constant approximations of stresses over finite element region. The deviation calculated values from exact
solutions does not exceed 2 %. Such stresses approximations can provide the displacements convergence to
exact values from above.

3. The stresses approximations which are based on variants 1 and 2 are discontinuous along the finite
elements’ boundaries, but also provide good accuracy in the stress’ determination. Even we use coarse grids,
the deviation calculated values from the exact solutions is 5—6 %. Such finite elements can be convenient
when we must solve branched and combined structures.

4. The proposed method can be further used to build equilibrium triangular finite elements and to solve
bulk problems of the elasticity theory.
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PaBHOBECHbIE KOHEYHbIE 3NIEMEHTHI
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KnioueBble cnoBa: annpokcnMmauunm Hanp;|>|<eHm71, aononHuTenbHaa aHeprna, MeTo KOHE4YHbIX 3J1IEMEHTOB,
nrnockKada 3agava

AHHOTauma. PaGota noceslleHa MOCTPOEHMIO KOHEYHbIX 3fIEMEHTOB Ha OCHOBE anmnpoKcMMaLum
HanpsbkeHu  Ans  pelleHus MNMOCKUX  3agady  Teopuu  ynpyroctu. Takue aneMeHTbl  SBRSTCS
anbTepHaTUBHbLIMU  CYLLECTBYIOLUMM  KOHEYHbIM  3M1EMEHTaM, MOMyYeHHbIM C  UCMONb30BaHWEM
annpokcumauum nepemMeLLeHnin. AnbTepHaTUBHbIE pelleHUst Mo3BonNsT 6onee TOYHO OLEHUBATb
HanpsiKeHHo-Ae(OPMUPOBAHHOE COCTOSIHUE KOHCTpYKUMK. Mpeanaraemasi MeToavKa NocTPOeHUs1 KOHEYHbIX
9/IEMEHTOB OCHOBBLIBAETCS Ha MPUHUMNAEX MWHMMYMa [OOMONHUTENBbHON SHEPrMM U BO3MOXKHBIX
nepemMelleHunin. PaccmaTtpuBaloTcs pasnuuHble BapuaHTbl  annpoKCMMauWuW  HamnpsbKeHWn, KoTopble
yaooBreTBopstoT anddepeHumnanbHbIM YypaBHEHUSIM PaBHOBECUS ANs Criydasi OTCYTCTBUSI pacnpeaeneHHom
Harpysku. BbINnonHEHO cpaBHEHWE peLLeHui, NoMyYEHHbIX Mo NpeanaraemMon MeToauke, ¢ aHanMTUYECKUMU
peleHnamMn Ans Konbua u usrnbaemoin Ganku. PaccMoTpeHHble BapuaHTbl annpoKCUMauun HamnpsikKeHuii
MoKasblBaloT A1 TECTOBbIX 3aay XOPOLY TOYHOCTb M CXOAMMOCTb NPU U3MENbYEHUN CETKU KOHEYHbIX
arnemMeHTOoB. okasaHo, YTO Ny4llyt0 TOYHOCTb BbIMUCIIEHUSI HANPSKEHUA U NepemelleHunii obecneunsaeT
KOHEYHbIA 3IEMEHT C KYCOYHO-NOCTOSIHHLIMU annpoKCcMMaumsMy HanpsbkeHin. Kpome Toro, Takon KOHEYHbI
areMeHT obecrneyrBaeT CXOQUMOCTb MEPEMELLEHUA K TOYHbIM 3HauyeHusIM cBepxy. [pyrve BapuaHTbl
KOHEYHbIX 311EMEHTOB MOryT BbITb YAOGHbLI AN pacyeTa pa3BeTBNEHHbIX U KOMOMHMPOBAHHBIX KOHCTPYKLWIA.
MpeanaraeMble paBHOBECHbLIE KOHEYHbIE 3feMEHTbl MOryT OblTb WCMONb30BaHbl AN Gonee TOYHOro
onpeneneHnsl HanpshkeHUn B pacCUUTbIBAeMbIX KOHCTpyKuuax. [Mpennaraemas metoguka MOXeT ObiTb
1crnonb3oBaHa Ansi NOCTPOeHUsS! 06 bEMHbBIX KOHEYHBIX 3NTIEMEHTOB.
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