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Abstract. Development of a general computer program for the design and verification of thin-walled bar structural
members remains an actual task. Despite the prevailing influence of normal stresses on the stress-strain state of
thin-walled bars design and verification of thin-walled structural members should be performed taking into account
not only normal stresses, but also shear stresses. Therefore, in the paper a thin-walled bar of an arbitrary cross-
section which is undergone to the general load case is considered as investigated object. The main research
guestion is development of mathematical support and knoware for numerical solution for the shear stresses
problem with orientation on software implementation in a computer-aided design system for thin-walled bar
structures. The problem of shear stresses outside longitudinal edges of an arbitrary cross-section (including open-
closed multi-contour cross-sections) of a thin-walled bar subjected to the general load case has been considered
in the paper. The formulated problem has been reduced to the searching problem for unknown shear forces flows
that have the least value of the Castigliano’s functional. Besides, constraints-equalities of shear forces flows
equilibrium formulated for cross-section branch points, as well as equilibrium equation formulated for the whole
cross-section relating to longitudinal axes of the thin-walled bar have been taken into account. A detailed numerical
algorithm intended to solve the formulated problem has been proposed by the paper. The algorithm is oriented on
software implementation in systems of computer-aided design of thin-walled bar structures. Developed algorithm
has been implemented in SCAD Office environment by the program TONUS. Numerical examples for calculation
of thin-walled bars with open and open-closed multi-contour cross-sections have been considered in order to
validate developed algorithm and verify calculation accuracy for sectorial cross-section geometrical properties and
shear stresses caused by warping torque and shear forces. Validity of the calculation results obtained using
developed software has been proven by considered examples.

1. Introduction

To provide desired stiffness and strength in torsion, bridge superstructures are often constructed with a
cross-section consisting of multiple cells (Figure 1) which have thin walls relative to their overall dimensions.
When the cross-section contains multiple cells, they all provide resistance to applied torsion and for elastic
continuity each cell must twist the same amount. With these considerations, equilibrium and compatibility
conditions allow simultaneous equations to be formed and solved to determine the shear flow for each cell [1].

The behavior of single-box multi-cell box-girders with corrugated steel webs under pure torsion has
been considered by Kongjian Shen et al. [2]. Experimental and numerical studies for considered structures
have been also performed [3].

Dowell and Johnson proposed a relaxation method that distributes incremental shear flows back and
forth between cells, reducing errors with each distribution cycle, until the final shear flows for all cells
approximate the correct values. A closed-form approach has been introduced to determine, exactly, both the
torsional constant and all shear flows for multi-cell cross-sections under torsion in the paper [1].

The problem of shear stresses determination for thin-walled bars has been also studied by Slivker in [4,
5] for the general loading case. His semi-sheared theory has been applied by Lalin et al. [6, 7] and Dyakov [8]
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for the stability problems of thin-walled bars.

Further investigations in this area require the development of a detailed algorithm intended to software
implementation in a computer-aided design system for thin-walled structures [9]. Such algorithm can be
validated against benchmark examples as well as finite element results [10, 11]. It is reasonable to construct
this algorithm using the mathematical apparatus of the graph theory as it is convenient to describe the
topological properties of multi-cellular cross-section [12].

The graph algorithm used in this paper is given first by Tarjan [13]. Its application in analysis of thin-walled
multi-cellular section is described by Alfano et al. [14], but the distribution of torsion stresses due to a change in
normal stresses has not been considered. The graph theory has been also applied in [15, 16] to calculate the
geometrical cross-sectional properties of thin-walled bars with hybrid (open-closed) types of cross-sections.

A simple computer program has been developed by Chai H. Yoo et al. [17] to evaluate the bending
shear flow of any multiply-connected cellular sections. Proki¢ has developed a computer program for the
determination of the torsional and flexural properties of thin-walled beams with arbitrary open-closed cross-
section. In his paper [18] graph theory has been also applied to establish the topological properties of multi-
cellular cross-section. Gurujee and Shah [19] presented a general purpose computer program capable of
analyzing any planar frame made up of thin-walled structural members. Choudhary and Doshi proposed an
algorithm for shear stress evaluation in ship hull girders [20].

Although many papers are published on the behavior of thin-walled bars, the development of a general
computer program for the design and verification of thin-walled structural members remains an actual task.
Despite the prevailing influence of normal stresses on the stress-strain state of thin-walled bars, the design and
verification of thin-walled structural members should be performed taking into account not only normal stresses,
but also shear stresses. Therefore, in this paper, a thin-walled bar of an arbitrary cross-section under the general
load case is considered as investigated object. The main research question is the development of mathematical
support and software for numerical solution for the shear stresses problem with orientation on software
implementation in a computer-aided design system for the thin-walled structures.

2. Methods
2.1. Problem formulation

Let us consider the problem of shear stresses on longitudinal edges of an arbitrary section of a thin-
walled bar that consists of several closed (connected and/or disconnected) contours and/or also open parts.

Let us introduce in the plane of thin-walled cross-section a Cartesian coordinate system YOz with the origin
in the center of mass C of the section, the direction of the coordinate system axes Yc:OZ¢ coincides with the
direction of principle axes of inertia. Let us also introduce in the plane of thin-walled cross-section a Cartesian
coordinate system YsOzs with the origin in the shear center S of the section, the direction of the coordinate
system axes YsOzs coincides with the direction of principle axes of inertia.

Let us introduce in further consideration the system of angular position coordinate with the origin in a
certain (generally randomly selected) sectional point. Each considered sectional point can be associated with

the angular position ¢. The value ¢should be calculated as the geometrical length of the curve constructed from
the origin to the considered sectional point taken along the sectional contour. We also assume that the increment

of the angular position ¢ corresponds to the positive direction of section path tracing.

We assume that the integral geometrical properties of the section are known: A is the cross-sectional
area, ly and |; are the second moments of area relative to the main axes of inertia which coincide with axes
of global Cartesian coordinate system YcOZc; | » is the sectorial moment of inertia; It is the second moment of

area for pure torsion. We also assume that Young’s modulus E and shear modulus G are constant for the
whole cross-section of the thin-walled bar.

Generally, the thin-walled bar is subjected to the action of eight force factors. Axial force N, bending
moments My and M; relative to the principle axes of inertia and warping bimoment B are applied at the center
of mass C (see Figure 2) of the section and cause normal stresses in the cross-section ai(X, ¢):

N(x) M, (x) M, (x) B(x)

O'i(X’g): A + 3 Zi(§)+TYi(§)+ I

@ (s), (1.1)

where Y, (g), Z (g), @, (g) are the coordinates and sectorial coordinate of the considered point in cross-
section of a thin-walled bar.
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Figure 1. Box-girder bridge multi-cell Figure 2. Cross-section of a thin-walled bar
cross-section [23]. with representation of different angular positions

as examples.

Shear forces Qy and Q;, total torque My and warping torque My are applied at the shear center S (see
Figure 2) of the cross-section and cause shear stresses in the cross-section, which can be written in terms of

shear forces flows Tj(X, ¢) as presented below:

T, (%¢)
7 (x¢)= —15 ’ (1.2)
i(s)

where §; (<) is the thickness of j section element.

An arbitrary section of the thin-walled bar can be described by the set of sectional points
P= { P, = {yp, zp} |p=1 np} (Yp and zp are the coordinates of p* sectional point in the global Cartesian
coordinate system yOz) and by the set of sectional segments S :{§s :{p:t, p:”d}|s =1, ns}, which

connect some two adjacent sectional points (Figure 3), where Np and Ns are the numbers of the sectional
points and segments, respectively.
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Figure 3. Arbitrary cross-section of a thin-walled bar determined on the set
of sectional points P and set of sectional segments S.

The specified segment thickness 6 = {55 |s=1, ns} corresponds to each sectional segment. The set
of sectorial coordinates = {a)p | p=1 np} and the set of normalized sectorial coordinates

o= {wp | p=1, np} of the section correspond to the set of the sectional points P, assuming that the values
of the sectorial coordinates and normalized sectorial coordinates in each cross-sectional point are known.

it _ )= _ start _end _ . . .
The set of angular positions ¢ = {gK = {gK VG }IK =1, n. —1} is actually intended to implement a
numerical integration taken along the thin-walled section contour (e.g., when calculating geometrical properties

of the cross-section, values of shear forces flows, etc.), where x is the number of a segment, Nno— 1 is the
number of the sectional segments. It should be noted that the angular positions are attributes of the ends of
the sectional segments.
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The initial data about the thin-walled section should be mapped onto the set of the angular positions ¢,

K= 1, n. -1 by means of corresponding sets of sectional segments

={5s ={c%", £} g% o ) set of sectorial coordinates

©° = {a) —{a),ita", a),‘i"d}:a)smn o cm} for the ends of sectional segments as well as the set of

thicknesses §° = {6g CS} for the segments, x =1, n, -1

2.2. Distribution of shear forces flows along closed contours
of an arbitrary cross-section of thin-walled bar

2.2.1. Construction of connected graph G associated with a section of a thin-walled bar

An arbitrary cross-section of a thin-walled bar can be associated with a planar connected non-oriented
graph G determined on the sets of G = {V, R}, where V is the finite set of the graph vertices, R is the set of
the graph edges or the set of unordered pairs on V (Figure 4) [21, 22]. Herewith, for each graph edge
r={u,v}e R we assume that U # V.

S S N S

Figure 4. Graph G associated with cross-section of thin-walled bar
(the branch points are highlighted in red, while the end points are highlighted in blue).

The vertices of the graph G are associated with characteristic sectional points only, which can be either:
1) branch points, i.e. sectional points connected with more than two sectional segments,
VP = { p,lv=1 nv}, here Ny is the number of these points;

2) end points, i.e. sectional points connected with only one sectional segment Vend = { r)g |g=1 Ng },
here Ng is the number of these points.

The edges of the graph G are associated with sectional parts located between characteristic sectional
points (with unbranched sectional parts). An edge of the graph G, as a rule, may contain several sectional

segments, so the full information about edge Rﬁ of the graph can be described by the set of sectional

segments S, r=1n n.;, from the array St = {sg —{g;ta”, gi”d}|;(:1, n. _1}, 57 €S°, belonging to
considered graph edge, S’ € R;: R% = {Sg S; eSTAST eR;[r=1, nm} here Ngj is the number of

segments for jth graph edge. The set of all the graph edges defined on the set of segments S can be expressed
as RS :{R§ | ] :1,nr}.

We also assume that the arbitrary section of the thin-walled bar may contain some quantity of closed

contours. Each closed contour is associated with a cycle of the graph G or with a vertices sequence

Ve,V VL, VE, such that V- vE Vi < 3V

i 1.1 Where N is the number of closed contours in the section

(the number of the graph chcles).
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Some closed contour of a section FE (a basic cycle of the graph d) can be definitely determined by

the set of the graph edges R? € R® belonging to the considered contour l“,rf = {Ri | ] :m} where
Nor is the number of the graph edges belonging to k" closed contour. Besides, it is convenient to have the
mapping of the closed contour I} onto the set of sectional segments S5, S5 €S°, belonging to the
considered closed contour, ¥Ym :1,n—grk: I; = {§nf 5. €S5,dR;, cR°:S; <R AR; C F,rf}, here

N is the number of the sectional segments belonging to k" closed contour.

The closed contours (basic cycles of the graph G) defined on the set of graph edges RS and on the set
of section segments S$ can be described as @' = {FE |k =1, nk} and ®° = {Fﬁ [k =1, nk}, respectively.

It should be noted that the identification of closed contours in the section ®'¢ and ®¢ can be easily
implemented using depth-first search algorithms on the graph.

Let us compose an incidence matrix I for the graph G with dimensions Nvx Ny,

i= {gij [i=1n, j=1 nr}. The components of the matrix take the following values: i =1, if " graph vertex
is a start vertex for " edge; g; =—1, if i"" graph vertex is an end vertex for j" edge; g;; =0, otherwise. Let us
also introduce a matrix |I| = {|gij | li=1n, j=1 nr} composed of the modulus of elements gij of the matrix I

Next, we can compose a matrix of basic graph cycles J with dimensions Nk x Nk, = { fkj }, k=1 n,,
j= 1,_nr. The components of the matrix take the following values: fxj = 1, if j*" graph edge belongs to kt basic

graph cycle (Ri c I‘ﬁ) and the edge direction coincides with the positive direction of path tracing; fij = -1,

if jt graph edge belongs to k" basic graph cycle (R‘j C Fﬁ) and the edge direction does not coincide with
the positive direction of path tracing; fxj = 0,, if j graph edge does not belong to k' basic graph cycle
(RyNTE =2).

2.2.2. Resolving equations relating to distribution of shear forces flows taken
along closed contours for an arbitrary section of a thin-walled bar

Each j" edge RS, j=1, n, of the graph G corresponds to a constant — edge weight,
ViS5, eRS A5 €S*:

d¢ Y 1 et Y e
: J 5(§) Z o g) r=1 5,? e r=1 5,5

Let us also compose the weighting matrix of unbranched sectional parts (edges of graph G) —asquare
matrix W with dimensions Nr x Ny and diagonal elements pj, j=1,n, :

p, 0 ... O
W = 9 pf ? (2.2)
0 0 0 p,

Besides, each | graph edge R? corresponds to the increment of the sectorial coordinate

— T
Ao ={Aef | j=1n} , Vi:SS RS A eS*:

Ner Morj Sxil Ner
Awﬁj=Ipdg=de=z I da)=z J. da)=2Aa),f. (2.3)
rj ’ri r=1 [/geRﬁ r=l ¢, r=1
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Each closed contour of the section FE, k =1, N, corresponds to the following constant — contour
weight, fj € F, Vj: RS T\ :

Nrerk

s o .45 _ o e _ 1o
pk_ig(g) Riirﬂgé(g) 1‘2—;‘|fkj|pj 24

Let us also introduce the weighting matrix of sectional contours — a square matrix K with dimensions
Nk X Nk:

pll P o P o~ plnk |
—Px f’zz TPy o _pan
Ko : : . ~. : : ’ 2.5)
P P2 0 P o TP,
__ pnkl _pnkZ T _pnkk .” pnknk i

where the diagonal elements of the matrix are the weights of k™ closed contour, P, = P, kK=1,n,;

other elements of the matrix Pos take zero value P, = Py, = 0 when corresponded closed contours have
no common edges: FZ ﬂl“% =, and the sum of the weights for all common edges:

Doy = pﬁa:Zpr,Vr t Ry TG AR T,

Let us consider the problem of torsion for an arbitrary thin-walled section subjected to total torque My
only. When the cross-section consists of a certain number of closed (connected and/or disconnected) contours,
as well as open parts, the torsion problem for the cross-section of the thin-walled bar is statically indeterminate.
Therefore, not only static equations but also strain compatibility conditions must be introduced to consideration.

Let us formulate the strain compatibility conditions considering Castigliano’s functional. The latter can be
identified with an expression for strain energy formulated in terms of stresses for an isotropic material [5]:

C:% g Z[%é‘(g)dg-&;(r(g))zé(g)dg : (2.6)

|

Besides, normal stresses o(c) can be omitted, as total torque acts only:

C=on] 3 J(x(6)) 5()de | @)

Let us rewrite Castigliano’s functional C Equation (2.7) substituting shear stresses 7(c) by their

= ~\T _—
representation in terms of contour flows T = {Tk} J k=1, n :

7. (¢) =%. (2.8)

In this case we obtain the following expression for Castigliano’s functional:

dg +Tk2 dg -|:1-|:2 J‘ dg _1:1T~3 J‘ dg

1:12 Cﬁ dg fzz
— 4

=1 —= ot == - -

267 o(s) 2676(s)  26:8(s) G ;,0(5) G, 8(c) 00
m_flfk J‘ dg _fzfs j dg _f2f4 J‘ dg _m_fsz J‘ dg _m_fk—lfk J‘ dg.
G 50(c) G () G ,6(5) G 2, 9(c) G 5.9
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-rk—lfk J‘ dg
rk—l,kg(g)

counter flows of shear stresses on the common parts of the thin-walled bar cross-section.

Negative summands in Equation (2.9) take into account the mutual work of the

It is evident that the resulting torsional moment in the section caused by all contour flows of shear
stresses 'I? = {'I:k }T k= 1,_nk equals to the sum of the torsional moments caused by each of these flows [5]:
Ny _
M, => T3, (2.10)
k=1
where (X is the double area embraced by k™" closed contour I'; of the section.

Let us present the formulated problem in the form of a mathematical programming task, namely as a
problem for unknown contour shear forces flows 'IE = {'I:k }T , k :m that ensure the least value of the
optimum criterion, i.e. Castigliano’s functional C Equation (2.9) subject to equilibrium condition Equation (2.10).

Let us present the solution of the formulated problem as follow:

- M

Tk = é_k Qx ) (2.11)
0

Mg
where (X is the double area for all closed contours of the section @5, (2, = Z.Qk; a, is the factor for the
k=L
distribution of shear forces flows along ki closed contour. Then Castigliano’s functional Equation (2.9) can be
rewritten as presented below:

265 PS(s) Pla(e) 7 6(s) o 6() e 6(s)
. d¢ ~ ~ dg < 5 dg
—244, | —-...—2aa —2_-24a4a, | ——-—... 2.11
T kia@) ”ia( ) @)

s d¢ - d¢ ~ =~ g
-24,4, | ———-24,a ———...—24_,a — |
2 4r45(g) 2%% j 5(g) k1% I 5(g)

2 Tok Ty-1,k
and the equilibrium equation Equation (2.10) can be presented by the following:

S My WS
« = a = a
k=1 k'QO ‘ QO k=1 o

or
M
2=Y8.0,. (2.12)
k=1

So, the formulated problem can be presented as a searching problem for unknown distribution factors
= {ék }T , k=1, n, of shear forces flows taken along closed contours of section that ensure the least value
of Castigliano’s functional C Equation (2.11) subject to equilibrium condition Equation (2.12).

The method of Lagrange multipliers can be used to reduce the problem Equations (2.11)—(2.12) to the
searching for a stationary point of the following modified functional A(é, }ta), where Aa is the Lagrange

multiplier. Besides, the stationary conditions for the modified functional A(é, /”ta) can be transformed to a

system of linear algebraic equations with an order of Nk + 1 presented below in the vector-matrix form:

<o x{a}:{%}, (2.13)
(Q)T 0 Aa €2
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where Q = {_Qk }T , k=1,n, is the column vector of double areas embraced by the closed contours of the
thin-walled bar. The resolving system of equations Equation (2.13) to calculate distribution factors

P ~ T 1~ ; i
a, = {ak} , k=1, n, of shear forces flows along the closed contours of the section is presented below:

Iﬁn P o Py plnk £ 51 0
— P2y P = —Pa o P, €% a, 0
“Pa P v P v TP (X[ & |=| 0], (2.14)
- pnkl - pnk 2 T - pnkk e pnknk an ank 0
I o Q, - Qe _an 0 | ENREes

where the diagonal elements of the matrix are the weights of ki closed contour,

- Ny
Puc = P» k=1, n,; Xis double area embraced by ki closed contour I, €2 = Z_Q )
k=1

Aa is the Lagrange multiplier. Other elements of the matrix pos take zero value Pop = Ppo = 0 when
corresponded closed contours have no common edges: Fi N F% = (J, and the sum of weights for all common
edges [5]is P,z = Py, :Z P, Vr : Ri T ART T

r

The solution of the system of algebraic equations Equation (2.14) returns the column vector of factors

ﬁk = {ék |k = m} for the distribution of shear forces flows along the closed contours of the section. Based

on ék , We can generate the column vector of factors for the distribution of shear forces flows along the graph

Gedges: A, = {aj | j=1, nr}, where each element should be determined as:

Mg
a;=> fya. f,eF vi=Lln, (2.15)
k=1

Since every graph edge R¢, =1, N,, is described by the set of sectional segments §f €S as:

RS ={S; :5; €S"AS; eR,|r=1n_}, then it is possible to determine for each sectional segment
§,f € S® the value of piecewise constant distribution function for shear flows taken along section a°® (g) as

the set of a° = {a}i |k =1n. —l} as follows: &; = a;, Vik:S:N®° =, and aZ =0, otherwise.

2.3. Resolving equations for an arbitrary cross-section of a thin-walled bar

The search problem of shear forces flows for an arbitrary cross-section of a thin-walled bar (including
open-closed multi-contour cross-sections) can be transformed into a minimization problem of Castigliano’s
functional C subject to constraints-equalities of shear forces flows equilibrium formulated for cross-section
branch points, as well as subject to equilibrium equation for the whole cross-section relating to longitudinal
axes of the thin-walled bar [5].

Let us present the formulated problem as a mathematical programming task, namely as searching for
unknown values of shear forces flows at the start points of unbranched parts of a section:

- T . _
Ts :{TS’J} l J :la nra (31)
which ensure the least value of the optimum criterion — Castigliano’s functional C:
C"=C(Ty") = min C(T) (3.2)
Ts € 37
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on a hyperplane of feasible decisions ST described by the following system of constraints-equalities:

£(Te)={ f,(T)=0lv=1n,-1};

(3.3)
f,(Ts)=0

where 'Ijs is the vector of design variables (searched shear flows);
Nr is the number of unknown shear flows;
fs* is the optimum decision of the problem;
C” is the minimum value of Castigliano’s functional;

fy is the function of the vector argument T. ;

Ny is the general number of constraints-equalities f, (fs) and f, (fs) which define the hyperplane of
feasible decisions J; in the sought space.
For Castigliano’s functional C we will consider only those Euler's equations that define the strain

— T R _—
compatibility conditions and are expressed depending on shear forces flows Ty = {TS,j} ,J=Ln,. Letus

rewrite Castigliano’s functional C Equation (2.6) replacing normal stresses o(c) by Equation (1.1), and shear
stresses 7(¢) — by the dependence on shear forces flows Equation (1.2) as presented below:

1 Q Q M
(¢)=—| T, —22S_ S Mos (o] |
6T S (61 250,025 6) »
1| 1 (N M, i
C=— — Yz 2y 42 | 5d
ZG[ < ,jz(1+v)[A A it ww] e
Z Q M. d
+ j(TS%j —2T3,j?—soy,j 2T Sy, —2Tsyj|—som,j]§—g+ (3.5)
/fj y z [2) j

where the functional dependence on the angular position ¢ is omitted to simplify the presented formulas.
Let us leave in Equation (3.5) those summands that depend on shear forces flows values

— T . —
Ty = {Ts,j} , J=1,n,, and also denote by the symbol ... all other summands that do not depend on the

= _ T
vector Tg. In this way we can obtain Castigliano’s functional C in terms of shear forces flows Ty = {TS j} [5]

as presented below:

ny TZ- Q Q M d
C= ST Xg o T Sy i —Ts i ==y, | |—=+... | 36
= ({{26 >lap, Sl Sl 7 s, (3.6)
v (TS ed Q d d M_ d
c=S| (25 1 = (s 25 7 s 2o 1 LI 3.7
=267 5 SJlej s SJGl I s G, R &0
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where the integral Id—g can be calculated according to Equation (2.1), and the integrals J.Soy’Jd—g,
j S d J. Soo.j ds _ using following Equations (3.8)~(3.10), respectively, V& :S: € RS AS: €S,
fj fj J
Sg.j(¢)ds _ (1
S 0z,j _ Sg ,start +4Sg ,mid +Sg .end : 38
hz, j [[_ 5(g) p= 655 ( 0z,k 0z,k 0z,x ) ( )
Sg.i(g)ds (1
S I oy, j — Sg ,start +4Sg ,mid Sg end : 3.9
[ S s o
d Y (]
Sho —I Ez) SelE S Y | (s as g S5 ) | (3.10
k=1 K

Let us define the following column vectors consisting of Ny elements, Vj

number of edges of the graph G):

Shz,l

Shz,2

wn

hy

S

hz,n,

hy,1

Shy,2

S

L “hy.ne |

hw,1

Shw,Z

hao,n,

=1 n, (according to the

(3.11)

Using the weighting matrix of unbranched sectional parts W, Equation (2.2), as well as column vectors

§hz, §hy and §hw, Equation (3.11), we can rewrite Castigliano’s functional, Equation (3.7), as the following
vector-matrix equation:
1 - Q Q M _ =
C=—TdWT,-T] =S, -Td =£§ -T/ —2S _+... 3.12
2G ° GI, ™ °Gl, Gl, " (3.12)

Next, for each section branch point we can develop an equation of shear forces flows equilibrium in terms of
projections on the longitudinal axis of the thin-walled bar. In order to obtain the general view for these equations

(the system of equations by the number of branch points in the section), we can use the incidence matrices I and

|i| introduced above, which reflect the topological structure of the considered cross-section of the thin-walled bar.
In this case we obtain the following system of equations presented below in the matrix-vector form:

@ T, Vo Tgs Tis Vs Tso T v, T 10
( Ts,z @ TS'4 TE,B/ 4
V.
Y
Tea T
Tio V5 Tz Tis T, Ty, VS'S
1 7 v 6
Ts,"t @ h @ TE,;

Figure 5. Relating to formulate equilibrium equations for shear stresses flows
in branch points of a thin-walled bar.

(il+1)7s (il -1)Te =0,

1, N, is the vector of shear forces flows at the start points of unbranched sectional

(3.13)

where T, = {TS‘J-}T ]
parts;
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— T . _
Te = {TE‘ i } , ] =1,n, isthe vector of shear forces flows at the end points of unbranched sectional parts:

T, =T, — AT, (3.14)

AT, ?—§,.+&s‘,+¥§w,j; (3.15)

where the vectors S S, ., S . are presented below:
Z,) p

v.j' Y@
_Sz’l_ _Sy,l_ _Sw,l_
S Il O R S S .19
_Sz’nr_ _Sy,n,_ _Sw’nr_

S . can be calculated as follow, Vi : S € Rﬁ NS €S

and the components of vectors §Z’j, Sy’j, o]

cr)
S, = I y*(5)d(s)ds = 2(5”{ oS Aij ; (3.17)
0
Syi=] Zg(€)5(§)d§=§(5§|5(Zi’m +%Azij : (3.18)
frj k=1

ch

Sw’j = J-wg (§)5(§') 2(5§|§( g start +%Awi J (3.19)
.

=1

Let us rewrite the system of equations Equation (3.13) substituting fE according to Equation (3.14).
We obtain the following system of equations:

(1 +1)Ts = ([i]-1)x (T - 4T) =0 (3.20)
(o= 1)7s (il )7+ ([i]-1) a7 =0 @21
21T, +(|1|— )A =0; (3.22)
and taking into account Equaton (3.15):
21T, +(|i|—i)x(?—zy S, | +%§y I: j: 0. (3.23)

The system of equations in Equation (3.23) in the matrix-vector form has Ny equilibrium equations. The
last equation is linear-dependent or a linear combination from the previous N, —1 equations. Let us rewrite
Equation (3.23) excluding the last equilibrium equation:

20T, + (|- ') x (Q S, | ? §'j+&§w'j}0; (3.24)
y

Y I

z w

where [ is the incidence matrix of the graph G truncated by the last row with dimensions (nV —1)><nr,
={gij li=Ln,—1,j=1, nr};
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' is the matrix composed using the modulus of elements gij of the truncated matrix [' as

={logli=Ln,~1j=1n]}.

It is possible to derive the last equilibrium equation relating to the longitudinal axis X — X of the thin-
walled bar as a condition of the static equivalence of the torsion moment caused by the shear forces flows to
the total torque My acting in the cross-section of the thin-walled bar:

M, ZJT )dw=0; (3.25)

_1Z

where Tj (g) is the shear forces flow at some point of the cross-section, which can be expressed depending

on shear forces flow TS’]- (g) at the start point of the corresponded unbranched part of the section as follow:

Q Q, M,
Ty =Toy S0y =2 S0~ S0 (3.26)

I oy, j | 0w, j’
z y @

where we omitted the functional dependence from the angular position g (to simplify presented formulas).
Then:

Ny Q , Mm
M, - J.LTS’J. -5, Qs - owy}.}pdg _0;
l

My =2\ Ts,i [ pds == yISoz,,-pdg f Sy, ;P0G - ISOW,jpdg =0.

= l; z 0] l; w ‘;

Finally, we obtain [5]:

JZ;TS,J' J.Pdg—%zr: '[ Soz,jpdg—&.zr: I Soy‘jpdg—l—z J. Sow deg M
= 7

z lef,j Iy J:Uj @ 1—1/

0; (3.27)

n, N n,
where integrals ZJ‘SOZdeg, ZJ‘SOy’jpdg and stowyjpdg can be calculated using

J:l(j J:l(j J:léj

Equations. (3.28)—(3.30), respectively, Vi :S° € Rg- NS €S

ne [ Ner
ISOZJ w) pdg = Z[iAg (Séi,ia“+4S§J,Td+S§f:")} (3.28)
Jl/ j=1\ x=1
S = N S d & [ Aa)g Sgstart 4ng|d Sgend
py—;f OyJ( )P 6= ,le 2—6 ( oy Ty T oyK) ; (3.29)
=44 =\ <

'S Ner,
Z [ S5 (@) pds = Z(ZJ Ag) (Sear + a5 + 550 )} (3.30)

=i, j=1\ x=1

Let us rewrite the constraints-equality Equation (3.27) using vector representation taking into account
Equations (3.28)—(3.30) as presented below:

= Q Q, M,
@' T, —I—ySpZ—I—Spy - S,,—M,=0. (3.31)
z y @

Thus, the formulated problem is presented as a mathematical programming task of searching for the
unknown values of shear forces flows at the start points of the unbranched parts of the section:

T ={Ts,,-}T1 i=Ln, (3.32)

which ensure the least value of the following Castigliano’s functional C Equation (3.12):
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1 Qs o1 Qs oMy :
C=—T,WT,-Ty =~S,_ -T, =25, -TJ ...—>min, 3.33
2G G, ™ °al, ™ *al, (3.33)
subject to the following equilibrium conditions Equations (3.24) and (3.31):
e U U Qy o Qz o Mm o .
20T, +( —1)£|—5m+l—sy,j+l—sm,j =0;
’ y “ (3.34)
. Q M
~T y z @ _
a)TS—I—SpZ—I—Spy— | Spw—MX—O.
z y @

The method of Lagrange multipliers can be used to reduce the mathematical programming task
Equations (3.32)—(3.34) to the searching for the stationary point of the following modified functional

A('I:S,/TT,/lnv):

= 7T 1 vt *TQy* =1 Q, & =r M, =
A(Tsv/1 ,ﬂnV)ZETS WTs T G_IZShZ_TS Glzy by = Ts Gl Shy +
+AT| 20T, +(I’—I’) &§2j+—z§yJ+M”’ Swi ||+
S 1, (3.35)
+ 2, | @' T —%s ?—spy—¥sw—|\/|x}—>min,
L z y @

where 1 = {if }, f —1 n, —1 is the vector of Lagrange multipliers consisting of N, —1 elements;

inv is an additional Lagrange multiplier.

The stationary conditions of the modified functional A ('IjS , AT , /”an ), Equation (3.35), can be transformed

into a system of N + N, linear algebraic equations and presented in vector-matrix form as follow [5]:

_ éw 247 Aot P "o SGh
20 @, 4., 0|« 7 |=Mx]0,, +%>< (i'=[i7)s,
(Awi)  0l, 0 | | L1 Z Spr
) & . ) §_ . (3.36)
+Rey (i'—(is')s Mo (1 |(13|)§
| l,
/4% SPW
where ) )
}éw 20T Aot
M= 2i' O, ,,, 0, .,
(A0f) 0.0

M is a square matrix with dimensions (nr +n, ) X (nr +n, ), where Ny and Ny are the numbers of edges
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and vertices of the graph G, respectively; A(of is the column vector of sectorial coordinates increments

. — T - . .
Aw; = {Awﬁj =1, nr} consisting of Nr components calculated according to Equation (2.3); S,, S,, S,

are the column vectors Equation (3.16) with Nr components calculated according to Equations (3.17)—(3.19)

respectively; Shy, §hz, §hw are the column vectors Equation (3.11) with Nr components calculated according

to Equations (3.8)—(3.10), respectively; Spy, sz, Spw are the integral section properties calculated according

to Equations (3.28)—(3.30), respectively.
The solution of the system of equations in Equation (3.36) determines the column vector of shear forces

_ T . — =
flows TS = {TS j} , =1 n,, atthe start points of unbranched cross-section parts. The vector TS can be also

presented as follow:

T, =M B, 206, + Qg Me

z y @

b, . (3.37)

In this case, the system of algebraic equations, Equation (3.36), disintegrates and transforms into four
systems of N, +N, algebraic equations relating to the column vectors b,,b , b, and b, consisting of nr
elements [5] as presented below:

b, 0, by G
Mx|| 1, |= 0, .|y Mx ﬁjy = (i'—i')xgy ;
Anx 1 Ao,y S,
- - (3.38)
- 5 . - §ﬂ -
b, G b, G
Mx| A, ||= (i'—|i'|)x§z . Mx| A |= (i'—|i'|)><§w :
lnvz S invw S

pz

where ZX :{ixvf}T , Zy :{ﬂyyf}T , /TZ :{lzyf}T ,ﬂt :{/1

(4 w, f

T —_—
} , =1 n, —1 are the unknown column

vectors of Lagrange multipliers consisting of Ny — 1 elements;

A A LA /Invw are the additional Lagrange multipliers.

X gyt gz

The projection of the vector b, = {bx,j | j=1, nr} defined of the set of Nr unbranched sectional parts
into the set of sectional segments b¢ = {bj’,( |x=1n —1} can be written as: by =D, ;Vx:§: < R%; and

by, =0 Vx:5:(1R5 =Q. Similarly, the column vectors By = {by'j | :ZI._nr} b, :{bz,j | :]__m} and

b :{bw'j | =1, nr} can be also projected into the set of sectional segments obtaining corresponded

column vectors Syg :{bjk | k=1, n. —1}, Bf :{bf],( | x =1, n. —1} and 6; :{b;,( | x =1, n, —1}.

The following transformations for the first moments of inertia and for the sectorial moment of inertia
should be performed, Vx =1, n, -1:

So {85, —b, }i8s {85, —b5 .} (3.39)
S5, (S5, b2, )i, < {s?gw,K —a }2—} (3.40)
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Let us define the sets of shear forces flows values for the start, middle and end points at the middle line
of the sectional segments T¢* {T“t} Témid {Tg m'd} Teend {Tg e“d}, x=1n_-1 consisting of

n. —1 elements (by the number of sectional segments) as presented below [22]:

g.start _ gOH as — Qy ¢ start Qz Qo.start Mw S¢.start.
Testat - £ 3 5 S

as ; ¢ S (3.41)
2, A e
y o
‘mid (@H Q id Q id MLD' id
Teme =ty - SN = SN - S (3.42)
H. Q M
oo _2H o T B g Tle oo, (3.43)

_QOK

Yy (2}

S S 3
where the first moments of inertia Soz e Soy . and the sectorial moment of inertia Sm .

transformations in Equations (3.39) and (3.40), respectively.

are calculated using

, tart id d
The shear stresses for each &' sectional segment T° z{ ¢ = {Tgsa o™ e }}, xk=1n_-1, can

be calculated as presented below:

st T ¢ start | 1 SO H 5§
T2’ =
K | Ik
) S, mld 1_ H [
=4 7s™ = T’(5g i( gOI) O , (3.44)
K k
¢.end -I-Kg,end + (1_ 80) H 515
T = s
. 55 l,
where the torsion moment of inertia Ix and the parameter ¢ are calculated as:
1 n.-1 3
|X=|k+|r=§Z|5(5g) +1,; (3.45)
k=1
1l
p=1 . (3.46)

X

Tg,StaI’t| |Tg m|d|

K

5 e |

K

| gend
K

and | Z | in Equation (3.44) define shear stresses values for the
K

The components |

start, middle and end points at the middle line of k" sectional segment, accordingly. Besides, transition from the
shear stresses related to the middle line of xi" segment to the shear stresses at the outside longitudinal edges

L=0) s

k

of this segment can be performed by addition or subtraction of the member

3. Results and Discussion
3.1. Software implementation

The numerical algorithm developed and presented above has been implemented to the TONUS
software (hereinafter —- TONUS), which is a satellite of the SCAD Office environment [24], as shown in Figure 6.
TONUS is intended to create cross-sections of thin-walled bars, to calculate their geometrical properties as
well as to calculate normal, shear and equivalent stresses in these cross-sections [9]. TONUS allows to
consider arbitrary (including open-closed) cross-sections of thin-walled bars. The cross-section of a thin-walled
bar is constructed from the set of segments (stripes) by specifying node coordinates that define the position
of segment ends as well as by specifying thicknesses for all segments.
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$I8 TONUS (64-bit) - [CAUsers\Vitalina\Desktop'\Prokic_openclosed.tns™] [
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Figure 6. TONUS main window.

In addition to the calculation of geometrical properties for the cross-sections of thin-walled bars, TONUS
also presents a sectorial coordinates diagram as well as static moment diagrams Sy, Sy and a first sectorial
moment S, diagram.

To present normal, shear and equivalent stresses diagrams in the section of a thin-walled bar, the user
should specify internal forces acting in the section. Initial data to construct normal stresses diagram include

bending moments My and My relating to the main axis of inertia of the thin-walled bar cross-section, axial
force N applied at the center of mass of the section, as well as warping bimoment B. Initial data to construct
shear stresses diagram are shear forces Quand Qv applied at the center of mass of the cross-section as

well as total torque My and warping torque Me. In order to represent equivalent stresses diagram user should
also specify a strength theory.

3.2. Example 1: open thin-walled cross-section

Let us consider an example of calculation of a thin-walled bar with open profile in order to validate the
developed algorithm and verify the accuracy of the calculated sectorial cross-section properties and shear
stresses caused by warping torsion.

Initial data for calculation are presented in Figure 7. The results of calculation, namely sectorial
coordinates diagram @ [cm?], and shear stresses diagram related to the value of warping torque z‘wM ;1 x10’
[cm~3], have been obtained in [18] and presented in Figure 8.

The results of calculation, namely sectorial coordinates @, sectorial moment of inertia S» and shear

stresses 7w caused by the warping torque My = 107 kN cm, have been also obtained using TONUS and
presented in Figures 10-12.

i 60 oG (o T 10 2202
* | +308 3303
" % [T +494
—
8 1 1 4000
o : +1436
o
G} 707 3470
15 ’ 1735
o~ .258 +921
1
i -1438
30
a b
Figure 7. Dimensions [cm] Figure 8. Results of calculation according to [18]: a — sectorial
of the open thin-walled section. coordinate @ [cm?]; b —shear stresses related to the warping

torque 7, M;,lx107 [cm~3].
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Figure 9. Considered cross-section
with segments and points numbers.

Figure 10. Results obtained using TONUS:
sectorial coordinate @ [cm?].

b2 a
513

~ 7 |
N K ‘

25443

Figure 11. Results obtained using TONUS:
sectorial moment of inertia Se [cm?].

Figure 12. Results obtained using TONUS:

modulus of shear stresses 7o [kN/cm?] caused
by warping torsion for the value of warping torque

Me = 107 KN cm.

Table 1. Comparison of the first sectorial moment and shear stresses caused by the warping
torque for the considered cross-section.

Section  Section ) ] Shear stresses Tw [kN/cm?]
segment point First sectorial moment S [cm?]
number  number (when Mo = 107 kN cm)
(Figure 9) (Figure 9) [18] TONUS Deviation,% [18] TONUS Deviation,%
1 1 32126 32140 0.04 1735 1736 0.06
1 2 0 0 0 0 0 0
2 1 32126 32140 0.04 3470 3472 0.06
2 8 30580 30585 0.02 3303 3304 0.06
3 8 30580 30585 0.02 2202 2202 0
3 4 7999 7985 0.18 576 575 0.17
4 4 6013 6019 0.1 433 432 0.23
4 5 0 0 0 0 0 0
5 4 14008 14004 0.03 1513 1513 0
5 3 15498 15498 0 1674 1674 0
6 6 0 0 0 0 0 0
6 3 25423 25443 0.08 1373 1374 0.07
7 3 9943 9945 0.02 537 537 0
7 7 0 0 0 0 0 0
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Table 2. Comparison of sectorial coordinates for the considered cross-section.

Section point number Sectorial coordinate @ [cm?]
(Figure 9) (18] TONUS Deviation, %
1 707 707 0
2 1436 1436 0
3 -258 -258 0
4 308 308 0
5 494 494 0
6 -1438 -1438 0
7 921 921 0
8 -810 -810 0

Sectorial first moment of inertia and shear stresses caused by warping torsion, as well as sectorial
coordinates for considered thin-walled bar cross-section are presented in Tables 1 and 2. The comparisons
have been made with some results presented in [18], which represent exact results for the considered
example. As it can be seen, the deviations do not exceed 0.25 % in all cases. It proves the validity of the
results obtained using the developed software.

3.3. Example 2: open-closed multi-contour thin-walled cross-section

Let us consider an example of calculation of a thin-walled bar with open-closed multi-contour profile in
order to validate developed algorithm and verify calculation accuracy for geometrical cross-section properties
and shear stresses caused by warping torsion, as well as shear force. The initial data for calculation are
presented in Figure 13.

The calculation results, namely sectorial coordinates diagram @ [cm?], diagram of shear stresses
caused by warping torsion related to the value of warping torque TWM;L x10’ [cm-8], as well as diagram of
shear stresses caused by acting of shear force related to the value of shear force TuQu_l x10° [cm—?] have
been obtained by Proki¢ [18] and presented in Figure 14.

i 100 100 100 100 100

0.5 0.5 “-

100

[ | 50 100 50
—|

Figure 13. Dimensions [cm] of the open-closed multi-contour section of the thin-walled bar.
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Figure 14. Results of calculations according to [18]: a — sectorial coordinates diagram @ [cm?];
b — shear stresses diagram caused by warping torsion related to the value of the warping torque

Ty M;x107 [cm~3]; ¢ — shear stresses diagram caused by shear force related to the value

of shear force 7,M*x10° [cm-2].
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Figure 15. Cross-section with Segments and points numbers.

The calculation results, namely sectorial coordinates @, static moment Sy relating to the main axes of

inertia V — V, first sectorial moment S_, shear stresses 7 caused by shear force Qu = 105 kN, as well as

o H
shear stresses 7, caused by warping torque Mm =107 kN cm for the considered cross-section section have

been obtained using TONUS and presented in Figure 16.

Figure 16. Results obtained using TONUS: a — distribution diagram of normalized sectorial
coordinates @ [cm?]; b —distribution diagram of first sectorial moment Sw [cm4]; c —distribution
diagram of modulus of shear stresses 7, [kN/cm?], constructed depending on the value
of the warping torque Mw = 10" kN cm; d — distribution diagram for the first moment Sy [cm?]

relating to the principle axis V — V; e — distribution diagram of modulus of shear stresses 7, [kN/cm?],
constructed depending on the value of shear force Qu= 10° kN.
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First moment Sy and first sectorial moment S_, shear stresses z and 7, caused by shear force Qu

and warping torque Mw, respectively, as well as sectorial coordinates @ for the considered cross-section

are presented in Tables 3-5. The comparisons have been made with some results presented in [18], which
represent exact results for the considered example. The deviations are no more than 0.3 % in all design cases.
It proves the validity of the results obtained using the developed software.

Table 3. Comparison of first moments for considered cross-section.

ssezt;rt:gzt Ssgit:ﬁn First sectorial moment Sm [cm4] First moment Sy [cm?]

(F?;L?gelrS) (F?;S::i;) [18] TONUS Deviation,% [18] TONUS Deviation,%
1 1 0 0 0 0 0 0
1 2 87776 87892 0.13 3643 3634 0.25
2 2 65181 65296 0.18 740 741 0.14
2 3 63932 64036 0.16 2903 2899 0.14
3 3 67055 67159 0.16 1812 1817 0.28
6 7 26114 26164 0.19 3595 3606 0.3
6 8 26489 26517 0.11 - 10 -
7 8 44606 44666 0.13 3816 3819 0.08
9 2 22595 22595 0 4373 4369 0.09
9 7 26135 26164 0.11 3606 3606 0
10 3 3176 3177 0.03 4715 4716 0.02
10 8 18117 18149 0.15 4031 4033 0.05

Table 4. Comparison of shear stresses caused by the warping torque, as well as by the shear
force for the considered cross-section.

Section Sec_tion Shear stresses 7 [kN/cm?] Shear stresses 7y [kN/cm?]
sneugrgﬂbeerlt nSr?:B:ar (when M _ =107 kN cm) (when Qu = 10° kN)
(Figure 15) (Figure 15) ™ g, TONUS Deviation, % [18] TONUS Deviation, %

1 1 0 0 0 0 0 0
1 2 843 844 0.12 197 197 0
2 2 626 627 0.16 40 40 0
2 3 614 615 0.16 157 157 0
3 3 644 645 0.16 98 98 0
6 7 209 209 0 162 163 0.6
6 8 212 212 0 - 10 0
7 8 357 357 0 172 172 0
9 2 434 434 0 473 473 0
9 7 502 503 0.20 390 390 0
10 3 61 61 0 510 510 0
10 8 348 349 0.29 436 436 0

Table 5. Comparison of normalized sectorial coordinate for the considered cross-section.

Section point number

Sectorial coordinate @ [cm?]

(Figure 15) [18] TONUS Deviation, %
1 +3241 +3241 0
2 -1483 -1483 0
3 -1102 -1102 0
7 -261 -261 0
8 +249 +249 0
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4. Conclusions
The results of the presented study can be formulated as follow:

1. The searching problem of shear stresses outside longitudinal edges of an arbitrary cross-section
(including open-closed multi-contour cross-sections) of a thin-walled bar subjected to the general load case
has been considered in the paper.

2. The formulated problem has been transformed into a minimization problem of Castigliano’s functional
subject to constraints-equalities of shear forces flows equilibrium formulated for cross-section branch points
as well as subject to an equilibrium equation for the whole cross-section relating to longitudinal axes of the
thin-walled bar.

3. A detailed numerical algorithm intended to solve the searching problem of shear forces flows for an
arbitrary cross-section of a thin-walled bar subjected to the general loading case using the mathematical
apparatus of the graph theory has been developed. The algorithm is oriented on software implementation in
systems of computer-aided design of the thin-walled structures.

4. The developed algorithm has been implemented to the TONUS software, which is a satellite of the
SCAD Office environment.

5. Numerical examples for calculation of the thin-walled bars with open and open-closed multi-contour
cross-sections have been considered in order to validate developed algorithm and verify calculation accuracy
for sectorial cross-section geometrical properties and shear stresses caused by warping torque and shear
forces.

6. Validity of the calculation results obtained using the developed software has been proven by
considered examples.
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Anroputm onpegerneHunst NoTOKOB KacaTesSibHbIX YCUnum ans
NPOWN3BOJSIbHLIX CEYEHUN TOHKOCTEHHbIX CTEPXXHEWN

B. OpyeHkKo*
Kuesckutll HayuoHarbHbIlU yHUBepcUmem cmpoumernbcmea u apxumekmypsl, 2. Kues, YkpauHa
* E—mail: vitalinay@rambler.ru

KniouyeBble cnoBa: TOHKOCTEHHbI CTepXeHb, MNpPon3BOJIbHOE CceY4YeHune, NOTOKN KacaTellbHbIX yCMJ'II/Il71,
3aMKHyTbII7I KOHTYp, TEeopus rpacbos, YMCNEHHBIN arnropuTMm, YNCrneHHble NpnumMepbl, NnporpamMmmHasa peanmsauna

AHHoTaumAa. PaspaboTka yHMBepcanbHOro MpPorpaMMHOro KOMMMeKkca Afns pacyeta U NpoeKTUpPOBaHUS
TOHKOCTEHHbIX CTEepPXHEBbIX 3NEMEHTOB KOHCTPYKLUMIW OCTaeTcs akTyanbHon 3agadvein. HecmoTps Ha
npeBanvpyloLllee BUSHUE HOPMAasbHbIX HaMNPsPKEHUA Ha HanpsXXeHHO-4edOpPMUMPOBaAHHOE COCTOSHME
TOHKOCTEHHbIX CTEepPXHEN, NpoBepka Hecyllen CMOCOBHOCTM TaKuMX 3MEeMEHTOB [OMKHa BbINOMHATLCS,
NpVMHUMasi BO BHUMaHWE Takke U 3Ha4YeHns KacaTenbHbIX HanpsikeHnn. B cBA3n ¢ aTum paccmoTpeHa 3agaya
rmomcka 3Ha4yeHW MNOTOKOB KacaTerbHbIX YCUIUIM Afs MPOU3BOSIbHOIMO CeYeHus (OTKPbITO-3aMKHYTOro
MHOFOKOHTYPHOIO Ce4EeHUs) TOHKOCTEHHOTO CTEPXKHSA AN obero cny4vas HarpyxeHus. CopmynupoBaHHas
3agava npuBedeHa K 3agave mateMaTU4eckoro nNporpaMMmMpoOBaHuns, a MMEHHO K 3agadve Noucka 3Ha4YeHun
HEM3BECTHbIX NMOTOKOB KacaTesNbHbIX HANPSXXeHU, obecnevmBaloLnX HaMMeHbLUEE 3Ha4YeHne yHKUMoHana
KacTnnbsHO npu yaoBneTBOPEHUM OrpaHNyYeHin paBHOBECKS MOTOKOB B TOYKaxX BETBIEHUS CEYEHWs, a Takke
npu yOOBMNETBOPEHUWN YpPaBHEHUSI PABHOBECMS BCErO CEYEHWs TOHKOCTEHHOTO CTEPXHSI OTHOCUMTENBHO
npoaonsHon ocu. PaspaboTaH aetanbHbI anroputM YMCIEHHOIO pelleHns copMyrnMpOBaHHON 3adaum ¢
ncnonb3oBaHWeM MaTemaTMdeckoro annapaTta Teopuu rpadoB, OPUEHTUPOBAHHLIA Ha MNPOrpamMMHYH
peanu3aumio B CUCTEMax aBTOMAaTU3MPOBAHHOIO MNPOEKTUPOBAHUSA TOHKOCTEHHbIX CTEPXXHEBbIX CUCTEM.
BbinonHeHa nporpammMHasl peanusaums pa3paboTaHHOro anroputma B cpefe BblYMCIUTENBHOIO KOMMekca
SCAD Office B nporpamme TOHYC. C uenbio Bepudukauumn paspaboTaHHOro anroputma v NpoBEpKM
TOYHOCTU BbIYMCIEHU TEOMETPUYECKMX XapaKTEPUCTUK 1 KacaTernbHbIX HANPSHKEHUA pacCMOTPEHbI MPUMEpHI
pacyeTa TOHKOCTEHHbIX CTEPXKHEBbIX 3IEMEHTOB OTKPbLITOrO M OTKPbITO-3aMKHYTOrO MHOFOKOHTYPHOIO
cedyeHun. Ha paccMOTpeHHbIX Mpumepax [oka3aHa [JOCTOBEPHOCTb pe3ynbTaToB, MOMyYaembiX Mpu
ncnonb3oBaHMM paspaboTaHHOro NporpamMmmHoro obecneveHus.
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