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Abstract. Development of a general computer program for the design and verification of thin-walled bar structural 
members remains an actual task. Despite the prevailing influence of normal stresses on the stress-strain state of 
thin-walled bars design and verification of thin-walled structural members should be performed taking into account 
not only normal stresses, but also shear stresses. Therefore, in the paper a thin-walled bar of an arbitrary cross-
section which is undergone to the general load case is considered as investigated object. The main research 
question is development of mathematical support and knoware for numerical solution for the shear stresses 
problem with orientation on software implementation in a computer-aided design system for thin-walled bar 
structures. The problem of shear stresses outside longitudinal edges of an arbitrary cross-section (including open-
closed multi-contour cross-sections) of a thin-walled bar subjected to the general load case has been considered 
in the paper. The formulated problem has been reduced to the searching problem for unknown shear forces flows 
that have the least value of the Castigliano’s functional. Besides, constraints-equalities of shear forces flows 
equilibrium formulated for cross-section branch points, as well as equilibrium equation formulated for the whole 
cross-section relating to longitudinal axes of the thin-walled bar have been taken into account. A detailed numerical 
algorithm intended to solve the formulated problem has been proposed by the paper. The algorithm is oriented on 
software implementation in systems of computer-aided design of thin-walled bar structures. Developed algorithm 
has been implemented in SCAD Office environment by the program TONUS. Numerical examples for calculation 
of thin-walled bars with open and open-closed multi-contour cross-sections have been considered in order to 
validate developed algorithm and verify calculation accuracy for sectorial cross-section geometrical properties and 
shear stresses caused by warping torque and shear forces. Validity of the calculation results obtained using 
developed software has been proven by considered examples. 

1. Introduction 
To provide desired stiffness and strength in torsion, bridge superstructures are often constructed with a 

cross-section consisting of multiple cells (Figure 1) which have thin walls relative to their overall dimensions. 
When the cross-section contains multiple cells, they all provide resistance to applied torsion and for elastic 
continuity each cell must twist the same amount. With these considerations, equilibrium and compatibility 
conditions allow simultaneous equations to be formed and solved to determine the shear flow for each cell [1]. 

The behavior of single-box multi-cell box-girders with corrugated steel webs under pure torsion has 
been considered by Kongjian Shen et al. [2]. Experimental and numerical studies for considered structures 
have been also performed [3]. 

Dowell and Johnson proposed a relaxation method that distributes incremental shear flows back and 
forth between cells, reducing errors with each distribution cycle, until the final shear flows for all cells 
approximate the correct values. A closed-form approach has been introduced to determine, exactly, both the 
torsional constant and all shear flows for multi-cell cross-sections under torsion in the paper [1]. 

The problem of shear stresses determination for thin-walled bars has been also studied by Slivker in [4, 
5] for the general loading case. His semi-sheared theory has been applied by Lalin et al. [6, 7] and Dyakov [8] 
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for the stability problems of thin-walled bars. 

Further investigations in this area require the development of a detailed algorithm intended to software 
implementation in a computer-aided design system for thin-walled structures [9]. Such algorithm can be 
validated against benchmark examples as well as finite element results [10, 11]. It is reasonable to construct 
this algorithm using the mathematical apparatus of the graph theory as it is convenient to describe the 
topological properties of multi-cellular cross-section [12]. 

The graph algorithm used in this paper is given first by Tarjan [13]. Its application in analysis of thin-walled 
multi-cellular section is described by Alfano et al. [14], but the distribution of torsion stresses due to a change in 
normal stresses has not been considered. The graph theory has been also applied in [15, 16] to calculate the 
geometrical cross-sectional properties of thin-walled bars with hybrid (open-closed) types of cross-sections. 

A simple computer program has been developed by Chai H. Yoo et al. [17] to evaluate the bending 
shear flow of any multiply-connected cellular sections. Prokić has developed a computer program for the 
determination of the torsional and flexural properties of thin-walled beams with arbitrary open-closed cross-
section. In his paper [18] graph theory has been also applied to establish the topological properties of multi-
cellular cross-section. Gurujee and Shah [19] presented a general purpose computer program capable of 
analyzing any planar frame made up of thin-walled structural members. Choudhary and Doshi proposed an 
algorithm for shear stress evaluation in ship hull girders [20]. 

Although many papers are published on the behavior of thin-walled bars, the development of a general 
computer program for the design and verification of thin-walled structural members remains an actual task. 
Despite the prevailing influence of normal stresses on the stress-strain state of thin-walled bars, the design and 
verification of thin-walled structural members should be performed taking into account not only normal stresses, 
but also shear stresses. Therefore, in this paper, a thin-walled bar of an arbitrary cross-section under the general 
load case is considered as investigated object. The main research question is the development of mathematical 
support and software for numerical solution for the shear stresses problem with orientation on software 
implementation in a computer-aided design system for the thin-walled structures. 

2. Methods 
2.1. Problem formulation 

Let us consider the problem of shear stresses on longitudinal edges of an arbitrary section of a thin-
walled bar that consists of several closed (connected and/or disconnected) contours and/or also open parts. 
Let us introduce in the plane of thin-walled cross-section a Cartesian coordinate system ycOzc with the origin 
in the center of mass C of the section, the direction of the coordinate system axes ycOzc coincides with the 
direction of principle axes of inertia. Let us also introduce in the plane of thin-walled cross-section a Cartesian 
coordinate system ysOzs with the origin in the shear center S of the section, the direction of the coordinate 
system axes ysOzs coincides with the direction of principle axes of inertia.  

Let us introduce in further consideration the system of angular position coordinate with the origin in a 
certain (generally randomly selected) sectional point. Each considered sectional point can be associated with 
the angular position ς. The value ς should be calculated as the geometrical length of the curve constructed from 
the origin to the considered sectional point taken along the sectional contour. We also assume that the increment 
of the angular position ς corresponds to the positive direction of section path tracing. 

We assume that the integral geometrical properties of the section are known: A is the cross-sectional 
area, Iy and Iz are the second moments of area relative to the main axes of inertia which coincide with axes 
of global Cartesian coordinate system ycOzc; Iω is the sectorial moment of inertia; It is the second moment of 
area for pure torsion. We also assume that Young’s modulus E and shear modulus G are constant for the 
whole cross-section of the thin-walled bar. 

Generally, the thin-walled bar is subjected to the action of eight force factors. Axial force N, bending 
moments My and Mz relative to the principle axes of inertia and warping bimoment B are applied at the center 
of mass C (see Figure 2) of the section and cause normal stresses in the cross-section σi(x, ς): 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), ,y z
i i i i

y z

M xN x M x B x
x z y

A I I Iϖ
σ ς ς ς ϖ ς= + + +  (1.1)  

where ( ) ( ) ( ), ,i i iy zς ς ϖ ς  are the coordinates and sectorial coordinate of the considered point in cross-
section of a thin-walled bar. 
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Figure 1. Box-girder bridge multi-cell  

cross-section [23]. 
Figure 2. Cross-section of a thin-walled bar  

with representation of different angular positions  
as examples. 

Shear forces Qy and Qz, total torque Mx and warping torque Mω are applied at the shear center S (see 
Figure 2) of the cross-section and cause shear stresses in the cross-section, which can be written in terms of 
shear forces flows Tj(x, ς) as presented below: 

( ) ( )
( )
,

, ,j
j

j

T x
x

ς
τ ς

δ ς
=  (1.2)  

where ( )jδ ς  is the thickness of jth section element. 

An arbitrary section of the thin-walled bar can be described by the set of sectional points 

{ }{ }, | 1,p p p pp y z p n= = =P 

 (yp and zp are the coordinates of pth sectional point in the global Cartesian 

coordinate system yOz) and by the set of sectional segments { }{ }, | 1, ,st end
s s s ss p p s n= = =S 

 which 

connect some two adjacent sectional points (Figure 3), where np and ns are the numbers of the sectional 
points and segments, respectively. 
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Figure 3. Arbitrary cross-section of a thin-walled bar determined on the set  

of sectional points P and set of sectional segments S. 

The specified segment thickness { }| 1,s ss nδ= =δ  corresponds to each sectional segment. The set 

of sectorial coordinates { }| 1,p pp nω= =ω  and the set of normalized sectorial coordinates 

{ }| 1,p pp nϖ ϖ= =  of the section correspond to the set of the sectional points P, assuming that the values 

of the sectorial coordinates and normalized sectorial coordinates in each cross-sectional point are known. 

The set of angular positions { }{ }, | 1, 1start end nκ κ κ ςς ς ς κ= = = −ς 

 is actually intended to implement a 

numerical integration taken along the thin-walled section contour (e.g., when calculating geometrical properties 
of the cross-section, values of shear forces flows, etc.), where κ is the number of a segment, nς – 1 is the 
number of the sectional segments. It should be noted that the angular positions are attributes of the ends of 
the sectional segments. 
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The initial data about the thin-walled section should be mapped onto the set of the angular positions ς , 
1, 1nςκ = −  by means of corresponding sets of sectional segments  

{s ς
κ=ςS  ={ , }: , },start end start end

κ κ κ κς ς ς ς ⊆ ς  set of sectorial coordinates 

{ }{ }, : ,start end start endς
κ κ κ κ κω ω ω ω ω= = ⊆ςω ω

 for the ends of sectional segments as well as the set of 

thicknesses { }ς
κδ= ⊆ςδ δ  for the segments, 1, 1.nςκ = −  

2.2. Distribution of shear forces flows along closed contours  
of an arbitrary cross-section of thin-walled bar 

2.2.1. Construction of connected graph Ɠ associated with a section of a thin-walled bar 

An arbitrary cross-section of a thin-walled bar can be associated with a planar connected non-oriented 
graph Ɠ determined on the sets of Ɠ = {V, R}, where V is the finite set of the graph vertices, R is the set of 
the graph edges or the set of unordered pairs on V (Figure 4) [21, 22]. Herewith, for each graph edge 

{ , }u v= ∈r R  we assume that .u v≠  

r101r
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Figure 4. Graph Ɠ associated with cross-section of thin-walled bar  
(the branch points are highlighted in red, while the end points are highlighted in blue). 

The vertices of the graph Ɠ are associated with characteristic sectional points only, which can be either: 

1) branch points, i.e. sectional points connected with more than two sectional segments, 

{ }| 1, ,v vp v n= =pv 

 here nν is the number of these points; 

2) end points, i.e. sectional points connected with only one sectional segment { }| 1, ,end g gp g n= =pv 

 

here ng is the number of these points.  

The edges of the graph Ɠ are associated with sectional parts located between characteristic sectional 
points (with unbranched sectional parts). An edge of the graph Ɠ, as a rule, may contain several sectional 
segments, so the full information about edge j

ςR  of the graph can be described by the set of sectional 

segments ,rs ς  1, ,rjr nς=  from the array { }{ }, | 1, 1 ,start ends nς
κ κ κ ςς ς κ= = = −ςS 

 ,rs ς ∈ ςS

 belonging to 

considered graph edge, :r js ς ∈R

 { }: | 1, ,j r r r j rjs s s r nς ς ς ς
ς= ∈ ∧ ∈ =ςR S R  

 here nςrj is the number of 

segments for jth graph edge. The set of all the graph edges defined on the set of segments Sς can be expressed 

as { }| 1, .j rj nς= =ςR R  

We also assume that the arbitrary section of the thin-walled bar may contain some quantity of closed 
contours. Each closed contour is associated with a cycle of the graph Ɠ or with a vertices sequence 

0 1 2, , , ..., ,k k k k
nv v v v  such that 1 1,k k k

i i iv v i v+ +∀ ⇔ ∃  where nk is the number of closed contours in the section 

(the number of the graph Ɠ cycles). 

6



Magazine of Civil Engineering, 92(8), 2019 

Yurchenko, V. 

Some closed contour of a section r
k
ςΓ  (a basic cycle of the graph Ɠ) can be definitely determined by 

the set of the graph edges j
ς ∈ ςR R  belonging to the considered contour { }| 1, ,

k

r
k j rj nς ς

ςΓ= =Γ R  where 

krn ςΓ  is the number of the graph edges belonging to kth closed contour. Besides, it is convenient to have the 

mapping of the closed contour r
k
ςΓ  onto the set of sectional segments ,ms ς  ,ms ς ∈ ςS

 belonging to the 

considered closed contour, 1, :
k

m nςΓ∀ =  { }: , : ,r
k m m m ks s sς ς ς ς ς ς ς ς ς

α α α= ∈ ∃ ⊆ ⊆ ∧ ⊆ςΓ S R R R R Γ  

 here 

k
nςΓ  is the number of the sectional segments belonging to kth closed contour. 

The closed contours (basic cycles of the graph Ɠ) defined on the set of graph edges Rς and on the set 
of section segments Sς can be described as { }| 1,r r

k kk nς ς= =Φ Γ  and { }| 1, ,k kk nς ς= =Φ Γ  respectively. 

It should be noted that the identification of closed contours in the section Фrς and Фς can be easily 
implemented using depth-first search algorithms on the graph. 

Let us compose an incidence matrix İ for the graph Ɠ with dimensions nν × nr, 
{ }| 1, , 1, .ij v rg i n j n= = =İ  The components of the matrix take the following values: 1,ijg =  if ith graph vertex 

is a start vertex for jth edge; 1,ijg = −  if ith graph vertex is an end vertex for jth edge; 0,ijg =  otherwise. Let us 

also introduce a matrix { }| 1, , 1,ij v rg i n j n= = =İ  composed of the modulus of elements gij of the matrix İ. 

Next, we can compose a matrix of basic graph cycles Ƒ with dimensions nk × nk, Ƒ { } ,kjf= 1, ,kk n=  

1, .rj n=  The components of the matrix take the following values: fkj = 1, if jth graph edge belongs to kth basic 

graph cycle ( )j k
ς ς⊆R Γ  and the edge direction coincides with the positive direction of path tracing; fkj = –1, 

if jth graph edge belongs to kth basic graph cycle ( )j k
ς ς⊆R Γ  and the edge direction does not coincide with 

the positive direction of path tracing; fkj = 0,, if jth graph edge does not belong to kth basic graph cycle 

( ).j k
ς ς = ∅R Γ  

2.2.2. Resolving equations relating to distribution of shear forces flows taken  
along closed contours for an arbitrary section of a thin-walled bar 

Each jth edge ,j
ςR  1, rj n=  of the graph Ɠ corresponds to a constant – edge weight, 

: :js sς ς ς
κ κκ∀ ∈ ∧ ∈ ςR S 

 

( ) ( )
1

1 1 1

1 .
rj rj rj

rj j

n n n

j
r r r

ld dp d
κς ς ς

ς
κς

ς ς
κ

ς ς
κ κς

ς ς ς
δ ς δ ς δ δ

+

= = =∈

= = = =∑ ∑ ∑∫ ∫ ∫
R



 (2.1)  

Let us also compose the weighting matrix of unbranched sectional parts (edges of graph Ɠ) – a square 
matrix W with dimensions nr × nr  and diagonal elements pj, 1, :rj n=  

1

2

0 0
0 0

.

0 0 0
rn

p
p

p

 
 

=  
 
  

W





   

 (2.2)  

Besides, each jth graph edge j
ςR  corresponds to the increment of the sectorial coordinate 

{ }, | 1, ,
T

r j rj nς∆ω= =ς
rΔω  : :js sς ς ς

κ κκ∀ ∈ ∧ ∈ ςR S 

 

1

,
1 1 1

.
rj rj rj

rj rj j

n n n

r j
r r r

d d d d
κς ς ς

ς κς

ς
ς ς

κ
ς

∆ω ρ ς ω ω ω ∆ω
+

= = =∈

= = = = =∑ ∑ ∑∫ ∫ ∫ ∫
R 



 (2.3)  
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Each closed contour of the section ,r
k
ςΓ  1, ,kk n=  corresponds to the following constant – contour 

weight, fkj ∈ Ƒ, : :r
j kj ς ς∀ ⊆R Γ  

( ) ( ) 1Γ R Γ

.
r k

r r
jk k

n

k kj j
j

d dp f p
ςΓ

ς ς ς

ς ς
δ ς δ ς =⊆

= = = ∑∫ ∫



 (2.4)  

Let us also introduce the weighting matrix of sectional contours – a square matrix K with dimensions 
nk × nk: 

11 12 1 1

21 22 2 2

1 2

1 2

Κ ,

k

k

k

k k k k k

k n

k n

k k kk kn

n n n k n n

p p p p
p p p p

p p p p

p p p p

− − − 
 − − − 
 
 =
 − − −
 
 
 − − − 


 


 

     


 

     


 

 (2.5)  

where the diagonal elements of the matrix are the weights of kth closed contour, ,kk kp p=   1, ;kk n=  

other elements of the matrix pαβ take zero value 0p pαβ βα= =  when corresponded closed contours have 

no common edges: Γ Γ ,ς ς
α β = ∅  and the sum of the weights for all common edges: 

,  :  R Γ R Γ .r r r
r

p p p r ς ς ς ς
αβ βα α β= = ∀ ⊆ ∧ ⊆∑  

Let us consider the problem of torsion for an arbitrary thin-walled section subjected to total torque Mx 
only. When the cross-section consists of a certain number of closed (connected and/or disconnected) contours, 
as well as open parts, the torsion problem for the cross-section of the thin-walled bar is statically indeterminate. 
Therefore, not only static equations but also strain compatibility conditions must be introduced to consideration. 

Let us formulate the strain compatibility conditions considering Castigliano’s functional. The latter can be 
identified with an expression for strain energy formulated in terms of stresses for an isotropic material [5]: 

( )( )
( ) ( ) ( )( ) ( )

2
2

1

1C .
2 2 1

r

j j

n

j
d d

G v
σ ς

δ ς ς τ ς δ ς ς
=

  
  = +
 + 

  
∑ ∫ ∫

 

 (2.6)  

Besides, normal stresses σ(ς) can be omitted, as total torque acts only: 

( )( ) ( )2

1

1C .
2

r

j

n

j
d

G
τ ς δ ς ς

=

 
 =
 
 
∑ ∫



 (2.7)  

Let us rewrite Castigliano’s functional C Equation (2.7) substituting shear stresses τ(ς) by their 

representation in terms of contour flows { } , 1, :
T

k kT T k n= =


   

( ) ( )
( )

.k
k

k

T ς
τ ς

δ ς
=


  (2.8)  

In this case we obtain the following expression for Castigliano’s functional: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 2 12 13

1 23 24 2 1,

22 2
1 31 2 1 2

Γ Γ Γ Γ Γ

1 2 3 2 12 4

Γ Γ Γ Γ Γ

C ... ...
2 2 2

... ... ... .

k

k k k k

k

k k k k

T T TT T T Td d d d d
G G G G G

T T T T T T T TT Td d d d d
G G G G G

ς ς ς ς ς
δ ς δ ς δ ς δ ς δ ς

ς ς ς ς ς
δ ς δ ς δ ς δ ς δ ς

−

−

= + + + − − −

− − − − − − −

∫ ∫ ∫ ∫ ∫

∫ ∫ ∫ ∫ ∫

     

        

  

 (2.9)  
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Negative summands 
( )

1,

1

Γk k

k kT T d
G

ς
δ ς

−

− ∫
 

 in Equation (2.9) take into account the mutual work of the 

counter flows of shear stresses on the common parts of the thin-walled bar cross-section.  

It is evident that the resulting torsional moment in the section caused by all contour flows of shear 

stresses { } , 1,
T

k kT T k n= =


   equals to the sum of the torsional moments caused by each of these flows [5]: 

1
,

kn

x k k
k

M T Ω
=

=∑   (2.10)  

where Ωk is the double area embraced by kth closed contour Γk
ς  of the section. 

Let us present the formulated problem in the form of a mathematical programming task, namely as a 

problem for unknown contour shear forces flows { } , 1,
T

k kT T k n= =


   that ensure the least value of the 

optimum criterion, i.e. Castigliano’s functional C Equation (2.9) subject to equilibrium condition Equation (2.10). 

Let us present the solution of the formulated problem as follow: 

0

,x
k k

MT a
Ω

=   (2.11)  

where Ω0 is the double area for all closed contours of the section Фς, 0
1

;
kn

k
k

Ω Ω
=

=∑  ka  is the factor for the 

distribution of shear forces flows along kth closed contour. Then Castigliano’s functional Equation (2.9) can be 
rewritten as presented below: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 2 12 12

13 1 23

24 2

2
2 2 2
1 2 1 2 1 22

0 Γ Γ Γ Γ Γ

1 3 1 2 3
Γ Γ Γ

2 4 2 1
Γ Γ Γ

C ... 2 2
2

2 ... 2 2 ...

... 2 2 ... 2

k

k

k k

x
k

k

k k k

M d d d d da a a a a a a
G

d d da a a a a a

d d da a a a a a

ς ς ς ς ς
δ ς δ ς δ ς δ ς δ ςΩ

ς ς ς
δ ς δ ς δ ς

ς ς ς
δ ς δ ς δ ς−


= + + + − − −



− − − − −

− − − −

∫ ∫ ∫ ∫ ∫

∫ ∫ ∫

∫ ∫

      

     

     

  

1,

,
k−






∫

 (2.11)  

and the equilibrium equation Equation (2.10) can be presented by the following: 

1 10 0

k kn n
x x

x k k k k
k k

M MM a aΩ Ω
Ω Ω= =

= =∑ ∑     

or 

0
1

.
kn

k k
k

aΩ Ω
=

=∑   (2.12)  

So, the formulated problem can be presented as a searching problem for unknown distribution factors 

{ } , 1,T
k ka a k n= =



   of shear forces flows taken along closed contours of section that ensure the least value 

of Castigliano’s functional C Equation (2.11) subject to equilibrium condition Equation (2.12). 

The method of Lagrange multipliers can be used to reduce the problem Equations (2.11)–(2.12) to the 
searching for a stationary point of the following modified functional ( )Λ , ,aa λ



  where λa is the Lagrange 

multiplier. Besides, the stationary conditions for the modified functional ( )Λ , aa λ


  can be transformed to a 

system of linear algebraic equations with an order of nk + 1 presented below in the vector-matrix form: 

( ) 0

K Ω 0
,

Ω 0
k

T
a

a
Ωλ

       × =          









 (2.13)  

9



Инженерно-строительный журнал, № 8(92), 2019 

Юрченко В. 

where { }Ω ,T
kΩ=



 1, kk n=  is the column vector of double areas embraced by the closed contours of the 
thin-walled bar. The resolving system of equations Equation (2.13) to calculate distribution factors 

{ } ,T
k ka a=


   1, kk n=  of shear forces flows along the closed contours of the section is presented below: 

11 12 1 1 1 1

21 22 2 2 2 2

1 2

1 2

1 2 0

0
0

0

0
0

k

k

k

k k k k k k k

k

k n

k n

k k kk kn k k

n n n k n n n n

k n a

p p p p a
p p p p a

p p p p a

p p p p a

Ω

Ω

Ω

Ω

Ω Ω Ω Ω λ Ω

− − −    
    − − −    
    
    
 − − −   × =
    
    
    − − −   
      


 




 



      

 


 



      

 


 



 

,











 
 

 (2.14)  

where the diagonal elements of the matrix are the weights of kth closed contour,  

,kk kp p=   1, ;kk n=  Ωk is double area embraced by kth closed contour Γ ,k
ς  0

1
;

kn

k
k

Ω Ω
=

=∑  

 λa is the Lagrange multiplier. Other elements of the matrix pαβ take zero value 0p pαβ βα= =  when 

corresponded closed contours have no common edges: Γ Γ ,ς ς
α β = ∅  and the sum of weights for all common 

edges [5] is ,  :  R Γ R Γ .r r r
r

p p p r ς ς ς ς
αβ βα α β= = ∀ ⊆ ∧ ⊆∑  

The solution of the system of algebraic equations Equation (2.14) returns the column vector of factors 

{ }| 1,k k ka a k n= =


   for the distribution of shear forces flows along the closed contours of the section. Based 

on ,ka


  we can generate the column vector of factors for the distribution of shear forces flows along the graph 

Ɠ edges: { }A | 1, ,r j ra j n= =  where each element should be determined as:  

1
,

kn

j kj k
k

a f a
=

=∑   kjf ∈Ƒ 1, ,rj n∀ =  (2.15)  

Since every graph edge ,j
ςR  1, ,rj n=  is described by the set of sectional segments ςSrs ς ∈  as: 

ςR { : S R | 1, },j r r r j rjs s s r nς ς ς ς
ς= ∈ ∧ ∈ =

  

 then it is possible to determine for each sectional segment 
ςSs ςκ ∈



 the value of piecewise constant distribution function for shear flows taken along section ( )aς ς  as 

the set of { }ςa | 1, 1a nς
κ ςκ= = −  as follows: ,ja aς

κ =  : Φ ,s ς ς
κκ∀ ≠ ∅


  and 0,aς
κ =  otherwise. 

2.3. Resolving equations for an arbitrary cross-section of a thin-walled bar 
The search problem of shear forces flows for an arbitrary cross-section of a thin-walled bar (including 

open-closed multi-contour cross-sections) can be transformed into a minimization problem of Castigliano’s 
functional C subject to constraints-equalities of shear forces flows equilibrium formulated for cross-section 
branch points, as well as subject to equilibrium equation for the whole cross-section relating to longitudinal 
axes of the thin-walled bar [5]. 

Let us present the formulated problem as a mathematical programming task, namely as searching for 
unknown values of shear forces flows at the start points of unbranched parts of a section: 

{ }, , 1, ,
T

S S j rT T j n= =


 (3.1)  

which ensure the least value of the optimum criterion – Castigliano’s functional C: 

( )* *

  
C C( ) min C

s T
S ST

T T
∈ ℑ

= =


 

 (3.2)  
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on a hyperplane of feasible decisions Tℑ  described by the following system of constraints-equalities: 

( ) ( ){ }
( )

f  0 | 1, 1 ;

0,

S v S v

x S

T f T v n

f T

 = = = −

 =

 



 (3.3)  

where ST


 is the vector of design variables (searched shear flows);  

nr is the number of unknown shear flows;  

*
ST


 is the optimum decision of the problem;  

C* is the minimum value of Castigliano’s functional;  

fv is the function of the vector argument ;ST


 

nv is the general number of constraints-equalities ( )v Sf T


 and ( )x Sf T


 which define the hyperplane of 

feasible decisions Tℑ  in the sought space. 

For Castigliano’s functional C we will consider only those Euler’s equations that define the strain 

compatibility conditions and are expressed depending on shear forces flows { }, , 1, .
T

S S j rT T j n= =


 Let us 

rewrite Castigliano’s functional C Equation  (2.6) replacing normal stresses σ(ς) by Equation (1.1), and shear 
stresses τ(ς) – by the dependence on shear forces flows Equation (1.2) as presented below: 

( ) ( ) ( ) ( ) ( ), , , ,
1 ;yz

j S j oy j oz j o j
j y z

Q MQT S S S
I I I

ϖ
ϖ

ϖ

τ ς ς ς ς
δ ς

 
= − − −  

 
 (3.4)  

( )

2

1

2
, , , , , , ,

2

, , ,

1 1C
2 2 1

2 2 2

,

r

j

j

j

n
y z

j j j j
j y z

yz
S j S j oy j S j oz j S j o j

y z j

yz
oy j oz j o j

y z j

M MN Bz y d
G v A I I I

Q MQ dT T S T S T S
I I I

Q MQ dS S S
I I I

ϖ

ϖ
ϖ

ϖ

ϖ
ϖ

ϖ

ϖ δ ς

ς
δ

ς
δ

=

    = + + + +    +  

 
+ − − − +  

 

  + + +      

∑ ∫

∫

∫







 (3.5)  

where the functional dependence on the angular position ς is omitted to simplify the presented formulas. 

Let us leave in Equation (3.5) those summands that depend on shear forces flows values 

{ }, , 1, ,
T

S S j rT T j n= =


 and also denote by the symbol … all other summands that do not depend on the 

vector .ST


 In this way we can obtain Castigliano’s functional C in terms of shear forces flows { },
T

S S jT T=


 [5] 

as presented below: 

2
,

, , , , , ,
1

C ;
2

r

j

n
S j yz

S j oy j S j oz j S j o j
j y z j

T Q MQ dT S T S T S
G GI GI GI

ϖ
ϖ

ϖ

ς
δ=

  
 = − − − +     

∑ ∫


  (3.6)  

2
,

, , , , , ,
1

C ,
2

r

j j j j

n
S j yz

S j oy j S j oz j S j o j
j j y j z j j

T Q MQd d d dT S T S T S
G GI GI GI

ϖ
ϖ

ϖ

ς ς ς ς
δ δ δ δ=

 
 = − − − +
 
 

∑ ∫ ∫ ∫ ∫
   

  (3.7)  
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where the integral 
j j

dς
δ∫



 can be calculated according to Equation (2.1), and the integrals , ,
j

oy j
j

dS ς
δ∫



 

,
j

oz j
j

dS ς
δ∫



 and ,
j

o j
j

dS ϖ
ς
δ∫



 – using following Equations (3.8)–(3.10), respectively, ς: R S ;js sς ς ς
κ κκ∀ ∈ ∧ ∈
 

 

( )
( ) ( ), , , ,

, , , ,
1

4 ;
6

rj

rj

n
oz j start mid end

hz j oz oz oz

S d lS S S S
ςς ς

ς ς ςκ
κ κ κς

κ κ

ς ς
δ ς δ=

 
= = + + 

 
∑∫



 (3.8)  

( )
( ) ( ), , , ,

, , , ,
1

4 ;
6

rj

rj

n
oy j start mid end

hy j oy oy oy

S d lS S S S
ςς ς

ς ς ςκ
κ κ κς

κ κ

ς ς
δ ς δ=

 
= = + + 

 
∑∫



 (3.9)  

( )
( ) ( ), , , ,

, , , ,
1

4 . 
6

rj

rj

n
o j start mid end

h j o o o

S d lS S S S
ςς ς

ϖ ς ς ςκ
ϖ ϖ κ ϖ κ ϖ κς

κ κ

ς ς
δ ς δ=

 
= = + + 

 
∑∫



 (3.10)  

Let us define the following column vectors consisting of nr elements, 1, rj n∀ =  (according to the 
number of edges of the graph Ɠ): 

,1 ,1 ,1

,2 ,2 ,2

, , ,

; ; .

r r r

hz hy h

hz hy h
hz hy h

hz n hy n h n

S S S
S S S

S S S

S S S

ω

ω
ω

ω

     
     
     = = =     
     
          

  

  

 (3.11)  

Using the weighting matrix of unbranched sectional parts W, Equation (2.2), as well as column vectors 
,hzS



 hyS


 and ,hS ϖ



 Equation (3.11), we can rewrite Castigliano’s functional, Equation (3.7), as the following 
vector-matrix equation: 

1C W
2

yT T T Tz
S S S hz S hy S h

z y

Q MQT T T S T S T S
G GI GI GI

ϖ
ϖ

ϖ

= − − − +
      

  (3.12)  

Next, for each section branch point we can develop an equation of shear forces flows equilibrium in terms of 
projections on the longitudinal axis of the thin-walled bar. In order to obtain the general view for these equations 
(the system of equations by the number of branch points in the section), we can use the incidence matrices İ and 
|İ| introduced above, which reflect the topological structure of the considered cross-section of the thin-walled bar. 
In this case we obtain the following system of equations presented below in the matrix-vector form: 

TE,8

TS,5E,1T

S,8T

E,6

E,7T

S,10TTE,9

TE,4
TS,7E,3T

TE,5

S,4T
S,9T

TS,3

S,6

E,2T

S,2T

4

3v v6

v75vv2

5r r9

4r

73

8r2r1v

r1

10r

 
Figure 5. Relating to formulate equilibrium equations for shear stresses flows  

in branch points of a thin-walled bar. 

( ) ( ) ,S ET T+ − − =
 

İ İ İ İ 0  (3.13)  

where { }, ,  1,
T

S S j rT T j n= =


 is the vector of shear forces flows at the start points of unbranched sectional 
parts;  
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{ }, , 1,
T

E E j rT T j n= =


 is the vector of shear forces flows at the end points of unbranched sectional parts: 

,E ST T T∆= −
  

 (3.14)  

where { } , 1,
T

j rT T j n∆ ∆= =


 is the vector of shear forces flows increments for each unbranched sectional part: 

, , , ;y z
j z j y j j

z y

Q MQT S S S
I I I

ϖ
ϖ

ϖ

∆ = + +
  

 (3.15)  

where the vectors , , ,, ,z j y j jS S Sϖ
  

 are presented below: 

,1 ,1 ,1

,2 ,2 ,2

, , ,

; ; ;

r r r

z y

z y
z y

z n y n n

S S S
S S S

S S S

S S S

ϖ

ϖ
ϖ

ϖ

     
     
     = = =     
     
          

  

  

 (3.16)  

and the components of vectors , , ,,  ,  z j y j jS S Sϖ
  

 can be calculated as follow, ς: R S :js sς ς ς
κ κκ∀ ∈ ∧ ∈
 

 

( ) ( ) ,
,

1

1 ; 
2

rj

rj

n
start

z jS y d l y y
ς

ς ς ς ς ς
κ κ κ κ

κ
ς δ ς ς δ ∆

=

  = = +    
∑∫



 (3.17)  

( ) ( ) ,
,

1

1 ;
2

rj

rj

n
start

y jS z d l z z
ς

ς ς ς ς ς
κ κ κ κ

κ
ς δ ς ς δ ∆

=

  = = +    
∑∫



 (3.18)  

( ) ( ) ,
,

1

1 .
2

rj

rj

n
start

jS d l
ς

ς ς ς ς ς
ϖ κ κ κ κ

κ
ϖ ς δ ς ς δ ϖ ∆ϖ

=

  = = +    
∑∫



 (3.19)  

Let us rewrite the system of equations Equation (3.13) substituting ET


 according to Equation (3.14). 
We obtain the following system of equations: 

( ) ( ) ( ) ;S ST T T∆+ − − × − =
  

İ İ İ İ 0  (3.20)  

( ) ( ) ( ) ;S ST T T∆− − − + − =
  

İ İ İ İ İ İ 0  (3.21)  

( )2 ;ST T∆+ − =
 

İ İ İ 0  (3.22)  

and taking into account Equaton (3.15): 

( ) , , ,2 .y z
S z j y j j

z y

Q MQT S S S
I I I

ϖ
ϖ

ϖ

 
+ − × + + =  

 

  

İ İ İ 0  (3.23)  

The system of equations in Equation (3.23) in the matrix-vector form has nv equilibrium equations. The 
last equation is linear-dependent or a linear combination from the previous 1vn −  equations. Let us rewrite 
Equation (3.23) excluding the last equilibrium equation: 

( ) , , ,2 ;y z
S z j y j j

z y

Q Q MT S S S
I I I

ϖ
ϖ

ϖ

 
′ ′ ′+ − × + + =  

 

  

İ İ İ 0  (3.24)  

where İ′  is the incidence matrix of the graph Ɠ truncated by the last row with dimensions ( )1 ,v rn n− ×  

{ }İ | 1, 1, 1, ;ij v rg i n j n′ = = − =   
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İ′  is the matrix composed using the modulus of elements gij of the truncated matrix İ′  as 

{ }İ | 1, 1, 1, .ij v rg i n j n′ = = − =  

It is possible to derive the last equilibrium equation relating to the longitudinal axis x – x of the thin-
walled bar as a condition of the static equivalence of the torsion moment caused by the shear forces flows to 
the total torque Mx acting in the cross-section of the thin-walled bar: 

( )
1

0;
r

j

n

x j
j

M T dς ω
=

− =∑ ∫


 (3.25)  

where ( )jT ς  is the shear forces flow at some point of the cross-section, which can be expressed depending 

on shear forces flow ( ),S jT ς  at the start point of the corresponded unbranched part of the section as follow: 

, , , , ,y z
j S j oz j oy j o j

z y

Q Q MT T S S S
I I I

ϖ
ϖ

ϖ

= − − −  (3.26)  

where we omitted the functional dependence from the angular position ς (to simplify presented formulas). 

Then: 

, , , ,
1

, , , ,
1

0;

0.

r

j

r

j j j j

n
y z

x S j oz j oy j o j
j z y

n
y z

x S j oz j oy j o j
j z y

Q MQM T S S S d
I I I

Q MQM T d S d S d S d
I I I

ϖ
ϖ

ϖ

ϖ
ϖ

ϖ

ρ ς

ρ ς ρ ς ρ ς ρ ς

=

=

 
− − − − =  

 
 
 − − − − =
 
 

∑ ∫

∑ ∫ ∫ ∫ ∫



   

   

Finally, we obtain [5]: 

, , , ,
1 1 1 1

0;
r r r r

j j j j

n n n n
y z

S j oz j oy j o j x
j j j jz y

Q MQT d S d S d S d M
I I I

ϖ
ϖ

ϖ

ρ ς ρ ς ρ ς ρ ς
= = = =

− − − − =∑ ∑ ∑ ∑∫ ∫ ∫ ∫
   

 (3.27)  

where integrals ,
1

,
r

j

n

oz j
j

S dρ ς
=
∑ ∫



 ,
1

r

j

n

oy j
j

S dρ ς
=
∑ ∫



 and ,
1

r

j

n

o j
j

S dϖ ρ ς
=
∑ ∫



 can be calculated using 

Equations. (3.28)–(3.30), respectively, ς: R S :js sς ς ς
κ κκ∀ ∈ ∧ ∈
 

 

( ) ( ), , ,
, , , ,

1 1 1
4 ;

6

rjr r

rj

nn n
start mid end

z oz j oz oz oz
j j

S S d S S S
ς ς

ς ς ς ςκ
ρ κ κ κ

κ

∆ωω ρ ς
= = =

 
= = + +  

 
∑ ∑ ∑∫



 (3.28)  

( ) ( ), , ,
, , , ,

1 1 1
4 ;

6

rjr r

rj

nn n
start mid end

y oy j oy oy oy
j j

S S d S S S
ς ς

ς ς ς ςκ
ρ κ κ κ

κ

∆ωω ρ ς
= = =

 
= = + +  

 
∑ ∑ ∑∫



 (3.29)  

( ) ( ), , ,
, , , ,

1 1 1
4 .

6

rjr r

rj

nn n
start mid end

o j o o o
j j

S S d S S S
ς ς

ς ς ς ςκ
ρϖ ϖ ϖ κ ϖ κ ϖ κ

κ

∆ωω ρ ς
= = =

 
= = + +  

 
∑ ∑ ∑∫



 (3.30)  

Let us rewrite the constraints-equality Equation (3.27) using vector representation taking into account 
Equations (3.28)–(3.30) as presented below: 

0.yT z
S z y x

z y

Q MQT S S S M
I I I

ϖ
ρ ρ ρϖ

ϖ

ω − − − − =




 (3.31)  

Thus, the formulated problem is presented as a mathematical programming task of searching for the 
unknown values of shear forces flows at the start points of the unbranched parts of the section: 

{ }, ,  1, ,
T

S S j rT T j n= =


 (3.32)  

which ensure the least value of the following Castigliano’s functional C Equation (3.12): 
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1 min,
2

yT T T Tz
S S S hz S hy S h

z y

Q MQT T T S T S T S
G GI GI GI

ϖ
ϖ

ϖ

= − − − + →
      

C W  (3.33)  

subject to the following equilibrium conditions Equations (3.24) and (3.31): 

( ) , , ,2 ;

0.

y z
S z j y j j

z y

yT z
S z y x

z y

Q MQT S S S
I I I

Q MQT S S S M
I I I

ϖ
ϖ

ϖ

ϖ
ρ ρ ρϖ

ϖ

ω

  
′ ′ ′+ − + + =     




− − − − =


  





İ İ İ 0

 (3.34)  

The method of Lagrange multipliers can be used to reduce the mathematical programming task 
Equations (3.32)–(3.34) to the searching for the stationary point of the following modified functional 

( ) Λ , , :
v

T
S nT λ λ


 

( )

( ) , , ,

1Λ , , W
2

2İ İ İ

min,

         

v

v

yT T T T Tz
S n S S S hz S hy S h

z y

yT z
S z j y j j

z y

yT z
n S z y x

z y

Q MQT T T T S T S T S
G GI GI GI

Q MQT S S S
I I I

Q MQT S S S M
I I I

ϖ
ϖ

ϖ

ϖ
ϖ

ϖ

ϖ
ρ ρ ρϖ

ϖ

λ λ

λ

λ ω

= − − − +

  
′ ′ ′+ + − + + +      

 
+ − − − − → 

  

        

   





 (3.35)  

where { } ,fλ λ=


 1, 1vf n= −  is the vector of Lagrange multipliers consisting of 1vn −  elements;  

vnλ is an additional Lagrange multiplier. 

The stationary conditions of the modified functional ( ) Λ , , ,
v

T
S nT λ λ


 Equation (3.35), can be transformed 

into a system of r vn n+  linear algebraic equations and presented in vector-matrix form as follow [5]: 

( )
( )

( ) ( )

ς
r

1, 1 1 1

1

1 2

2
10

r

v v v v

v
v

hzT

nS
y

n n n x n z
zT T n zn

hy h

z
y

y
y

S
T GG Q

M S
I

S

S S
G G

MQ S S
I I

S S

ρ

ϖ

ϖ
ϖ

ϖ
ρ ρϖ

λ
λ

− − − −

−

  ′              ′ ′ ′ × = × + × − +                      
  
  
  
 ′ ′ ′ ′+ × − + × −
 
 
   





 





 

ς
r

W İ Δω 0
İ Θ 0 0 İ İ

Δω 0

İ İ İ İ





 
 
 
 

 

(3.36)  

where 

( )
1, 1 1

1

1 2

2 ;

0
v v v

v

T

n n n
T T

n

G
− − −

−

 ′
 
 ′=
 
 
 

ς
r

ς
r

W İ Δω

M İ Θ 0

Δω 0

   

M  is a square matrix with dimensions ( ) ( ) ,r v r vn n n n+ × +  where nr and nv are the numbers of edges 
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and vertices of the graph Ɠ, respectively; ς
rΔω  is the column vector of sectorial coordinates increments 

{ }ς
r , | 1,

T

r j rj nς∆ω= =Δω  consisting of nr components calculated according to Equation (2.3); , ,y zS S Sϖ
  

 

are the column vectors Equation (3.16) with nr components calculated according to Equations (3.17)–(3.19) 
respectively; , ,hy hz hS S S ϖ

  

 are the column vectors Equation (3.11) with nr components calculated according 

to Equations (3.8)–(3.10), respectively; , ,y zS S Sρ ρ ρϖ  are the integral section properties calculated according 
to Equations (3.28)–(3.30), respectively. 

The solution of the system of equations in Equation (3.36) determines the column vector of shear forces 

flows { }, , 1, ,
T

S S j rT T j n= =


 at the start points of unbranched cross-section parts. The vector ST


 can be also 
presented as follow:  

.y z
S x x z y

z y

Q MQT M b b b b
I I I

ϖ
ϖ

ϖ

= + + +
   



 (3.37)  

In this case, the system of algebraic equations, Equation (3.36), disintegrates and transforms into four 
systems of r vn n+  algebraic equations relating to the column vectors , ,x y zb b b

  

 and bϖ


 consisting of nr 
elements [5] as presented below: 

( )1 ; ;
1

r

v

v v
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ynx

x n y y

n x n y y

S
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S
Sρ

λ λ
λ λ

−
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  
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



  

0
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n z nz

S S
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ϖ

ϖ ϖ
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            
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 

 

   

M İ İ M İ İ  

(3.38)  

where { } { } { } { }, , , ,, , , , 1, 1
T T T T

x x f y y f z z f f vf nϖ ϖλ λ λ λ λ λ λ λ= = = = = −
   

 are the unknown column 

vectors of Lagrange multipliers consisting of nv – 1 elements;  

, , ,
v v v vn x n y n z n ϖλ λ λ λ  are the additional Lagrange multipliers. 

The projection of the vector { }, | 1,x x j rb b j n= =


 defined of the set of nr unbranched sectional parts 

into the set of sectional segments { }, | 1, 1x xb b nς ς
κ ςκ= = −



 can be written as: , , : R ;x x j jb b sς ς ς
κ κκ= ∀ ⊆



 and 

, 0xbς
κ = : R .js ς ς

κκ∀ =∅


  Similarly, the column vectors { }, | 1, ,y y j rb b j n= =


 { }, | 1,z z j rb b j n= =


 and 

{ }, | 1,j rb b j nϖ ϖ= =


 can be also projected into the set of sectional segments obtaining corresponded 

column vectors { }, | 1, 1 ,y yb b nς ς
κ ςκ= = −



 { }, | 1, 1z zb b nς ς
κ ςκ= = −



 and { }, | 1, 1 .b b nς ς
ϖ ϖ κ ςκ= = −


 

The following transformations for the first moments of inertia and for the sectorial moment of inertia 
should be performed, 1, 1:nςκ∀ = −  

{ } { }, , , , , ,;oz oz z oy oy yS S b S S bς ς ς ς ς ς
κ κ κ κ κ κ← − ← −  (3.39)  

{ }, , , , ,
0

; .o o o o
IS S b S S aς ς ς ς ς ς ϖ

ϖ κ ϖ κ ϖ κ ϖ κ ϖ κ κ Ω
 

← − ← − 
 

  (3.40)  
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Let us define the sets of shear forces flows values for the start, middle and end points at the middle line 
of the sectional segments { } { } { },st ,st ,mid ,mid ,end ,end, , ,T T Tς ς ς ς ς ς

κ κ κ= = =T T T  1, 1,nςκ = −  consisting of 

1nς −  elements (by the number of sectional segments) as presented below [22]: 

,start ,start ,start ,start
, , ,

0

;y z
oz oy o

z y

Q MQHT a S S S
I I I

ς ς ς ς ςϖ
κ κ κ κ ϖ κ

ϖΩ
℘

= − − −   (3.41)  

, , , ,
, , ,

0

;ymid mid mid midz
oz oy o

z y

Q MQHT a S S S
I I I

ς ς ς ς ςϖ
κ κ κ κ ϖ κ

ϖΩ
℘

= − − −   (3.42)  

, , , ,
, , ,

0

,yend end end endz
oz oy o

z y

Q MQHT a S S S
I I I

ς ς ς ς ςϖ
κ κ κ κ ϖ κ

ϖΩ
℘

= − − −   (3.43)  

where the first moments of inertia , ,,oz oyS Sς ς
κ κ  and the sectorial moment of inertia ,oSς

ϖ κ
  are calculated using 

transformations in Equations (3.39) and (3.40), respectively. 

The shear stresses for each κth sectional segment { }{ },start ,mid ,endτ , , ,ς ς ς ς ς
κ κ κ κτ τ τ τ= =


 1, 1,nςκ = −  can 

be calculated as presented below:  
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( )
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1
τ ,
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κς ς κ

κ κ ς
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ςς
κς κ
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δ
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δ
δ

τ
δ

δ
τ

δ

 −℘
= ± 

 
 −℘ = = ± 
 
 −℘

= ± 
  

 (3.44)  

where the torsion moment of inertia Ix and the parameter ℘ are calculated as:  

( )
1

3

1

1 ;
3

n

x kI I I l I
ς

ς ς
Γ κ κ Γ

κ
δ

−

=

= + = +∑  (3.45)  

1 .k

x

I
I

℘= −  (3.46)  

The components 
,start

,T ς
κ

ς
κδ

 
,midT ς

κ
ς
κδ

 and 
,endT ς

κ
ς
κδ

 in Equation (3.44) define shear stresses values for the 

start, middle and end points at the middle line of κth sectional segment, accordingly. Besides, transition from the 
shear stresses related to the middle line of κth segment to the shear stresses at the outside longitudinal edges 

of this segment can be performed by addition or subtraction of the member 
( )1

.
k

H
I

ς
κδ

−℘
  

3. Results and Discussion 
3.1. Software implementation 

The numerical algorithm developed and presented above has been implemented to the TONUS 
software (hereinafter – TONUS), which is a satellite of the SCAD Office environment [24], as shown in Figure 6. 
TONUS is intended to create cross-sections of thin-walled bars, to calculate their geometrical properties as 
well as to calculate normal, shear and equivalent stresses in these cross-sections [9]. TONUS allows to 
consider arbitrary (including open-closed) cross-sections of thin-walled bars. The cross-section of a thin-walled 
bar is constructed from the set of segments (stripes) by specifying node coordinates that define the position 
of segment ends as well as by specifying thicknesses for all segments. 
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Figure 6. TONUS main window. 

In addition to the calculation of geometrical properties for the cross-sections of thin-walled bars, TONUS 
also presents a sectorial coordinates diagram as well as static moment diagrams Su, Sv and a first sectorial 
moment Sω diagram. 

To present normal, shear and equivalent stresses diagrams in the section of a thin-walled bar, the user 
should specify internal forces acting in the section. Initial data to construct normal stresses diagram include 
bending moments Mu and Mv relating to the main axis of inertia of the thin-walled bar cross-section, axial 
force N applied at the center of mass of the section, as well as warping bimoment B. Initial data to construct 
shear stresses diagram are shear forces Qu and  Qv applied at the center of mass of the cross-section as 
well as total torque Mx and warping torque Mω. In order to represent equivalent stresses diagram user should 
also specify a strength theory. 

3.2. Example 1: open thin-walled cross-section 
Let us consider an example of calculation of a thin-walled bar with open profile in order to validate the 

developed algorithm and verify the accuracy of the calculated sectorial cross-section properties and shear 
stresses caused by warping torsion. 

Initial data for calculation are presented in Figure 7. The results of calculation, namely sectorial 
coordinates diagram ω [cm2], and shear stresses diagram related to the value of warping torque 1 710Mω ωτ − ×  
[cm–3], have been obtained in [18] and presented in Figure 8. 

The results of calculation, namely sectorial coordinates ω, sectorial moment of inertia Sω and shear 
stresses τω caused by the warping torque Mω = 107 kN cm, have been also obtained using TONUS and 
presented in Figures 10–12. 

  
 a b 

Figure 7. Dimensions [cm]  
of the open thin-walled section. 

Figure 8. Results of calculation according to [18]: а – sectorial 
coordinate ω [cm2]; b –shear stresses related to the warping 

torque ω ωτ M -1×107 [cm–3]. 
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Figure 9. Considered cross-section  
with segments and points numbers. 

Figure 10. Results obtained using TONUS:  
sectorial coordinate ω [cm2]. 

  

Figure 11. Results obtained using TONUS: 
sectorial moment of inertia Sω [cm4]. 

Figure 12. Results obtained using TONUS: 
modulus of shear stresses τω [kN/cm2] caused  

by warping torsion for the value of warping torque 
Mω = 107 kN cm. 

Table 1. Comparison of the first sectorial moment and shear stresses caused by the warping 
torque for the considered cross-section. 

Section 
segment 
number 

(Figure 9) 

Section 
point 

number 
(Figure 9) 

First sectorial moment Sω [cm4] 
Shear stresses τω [kN/cm2] 

(when Mω = 107 kN cm) 
[18] TONUS Deviation,% [18] TONUS Deviation,% 

1 1 32126 32140 0.04 1735 1736 0.06 
1 2 0 0 0 0 0 0 
2 1 32126 32140 0.04 3470 3472 0.06 
2 8 30580 30585 0.02 3303 3304 0.06 
3 8 30580 30585 0.02 2202 2202 0 
3 4 7999 7985 0.18 576 575 0.17 
4 4 6013 6019 0.1 433 432 0.23 
4 5 0 0 0 0 0 0 
5 4 14008 14004 0.03 1513 1513 0 
5 3 15498 15498 0 1674 1674 0 
6 6 0 0 0 0 0 0 
6 3 25423 25443 0.08 1373 1374 0.07 
7 3 9943 9945 0.02 537 537 0 
7 7 0 0 0 0 0 0 
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Table 2. Comparison of sectorial coordinates for the considered cross-section. 

Section point number 
(Figure 9) 

Sectorial coordinate ω [cm2] 
[18] TONUS Deviation, % 

1 707 707 0 
2 1436 1436 0 
3 –258 –258 0 
4 308 308 0 
5 494 494 0 
6 –1438 –1438 0 
7 921 921 0 
8 –810 –810 0 

Sectorial first moment of inertia and shear stresses caused by warping torsion, as well as sectorial 
coordinates for considered thin-walled bar cross-section are presented in Tables 1 and 2. The comparisons 
have been made with some results presented in [18], which represent exact results for the considered 
example. As it can be seen, the deviations do not exceed 0.25 % in all cases. It proves the validity of the 
results obtained using the developed software. 

3.3. Example 2: open-closed multi-contour thin-walled cross-section 
Let us consider an example of calculation of a thin-walled bar with open-closed multi-contour profile in 

order to validate developed algorithm and verify calculation accuracy for geometrical cross-section properties 
and shear stresses caused by warping torsion, as well as shear force. The initial data for calculation are 
presented in Figure 13. 

The calculation results, namely sectorial coordinates diagram ϖ  [cm2], diagram of shear stresses 
caused by warping torsion related to the value of warping torque 1 710Mϖ ϖτ − ×  [cm–3], as well as diagram of 

shear stresses caused by acting of shear force related to the value of shear force 1 510u uQτ − ×  [cm–2] have 
been obtained by Prokić [18] and presented in Figure 14. 

 
Figure 13. Dimensions [cm] of the open-closed multi-contour section of the thin-walled bar.  

  
a b 

 
c 

Figure 14. Results of calculations according to [18]: a – sectorial coordinates diagram ϖ  [cm2];  
b – shear stresses diagram caused by warping torsion related to the value of the warping torque 

ϖ ϖτ M -1×107 [cm–3]; c – shear stresses diagram caused by shear force related to the value  

of shear force τ u uM -1×105 [cm–2]. 
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Figure 15. Cross-section with segments and points numbers. 

The calculation results, namely sectorial coordinates ,ϖ  static moment Sv relating to the main axes of 

inertia v – v, first sectorial moment ,Sϖ  shear stresses τu caused by shear force Qu = 105 kN, as well as 

shear stresses ϖτ  caused by warping torque Mϖ = 107 kN cm for the considered cross-section section have 
been obtained using TONUS and presented in Figure 16. 

a 
 

 
b 
 

 
c 
 

 
d 
 

 
e 
 

 
Figure 16. Results obtained using TONUS: а – distribution diagram of normalized sectorial 

coordinates ϖ  [cm2]; b – distribution diagram of first sectorial moment Sϖ  [cm4]; c – distribution 

diagram of modulus of shear stresses ϖτ  [kN/cm2], constructed depending on the value  

of the warping torque Mϖ  = 107 kN cm; d – distribution diagram for the first moment Sv [cm3] 
relating to the principle axis v – v; e – distribution diagram of modulus of shear stresses τu [kN/cm2], 

constructed depending on the value of shear force Qu = 105 kN. 
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First moment Sv and first sectorial moment ,Sϖ  shear stresses τu and ϖτ  caused by shear force Qu 

and warping torque ,Mϖ  respectively, as well as sectorial coordinates ϖ  for the considered cross-section 
are presented in Tables 3–5. The comparisons have been made with some results presented in [18], which 
represent exact results for the considered example. The deviations are no more than 0.3 % in all design cases. 
It proves the validity of the results obtained using the developed software. 

Table 3. Comparison of first moments for considered cross-section. 
Section 
segment 
number 

(Figure 15) 

Section 
point 

number 
(Figure 15) 

First sectorial moment Sϖ  [cm4] First moment Sv [cm3] 

[18] TONUS Deviation,% [18] TONUS Deviation,% 

1 1 0 0 0 0 0 0 
1 2 87776 87892 0.13 3643 3634 0.25 
2 2 65181 65296 0.18 740 741 0.14 
2 3 63932 64036 0.16 2903 2899 0.14 
3 3 67055 67159 0.16 1812 1817 0.28 
6 7 26114 26164 0.19 3595 3606 0.3 
6 8 26489 26517 0.11 – 10 – 
7 8 44606 44666 0.13 3816 3819 0.08 
9 2 22595 22595 0 4373 4369 0.09 
9 7 26135 26164 0.11 3606 3606 0 
10 3 3176 3177 0.03 4715 4716 0.02 
10 8 18117 18149 0.15 4031 4033 0.05 

Table 4. Comparison of shear stresses caused by the warping torque, as well as by the shear 
force for the considered cross-section. 

Section 
segment 
number 

(Figure 15) 

Section 
point 

number 
(Figure 15) 

Shear stresses ϖτ  [kN/cm2] 

(when Mϖ = 107 kN cm) 

Shear stresses τu [kN/cm2] 

(when Qu = 105 kN) 

[18] TONUS Deviation, % [18] TONUS Deviation, % 
1 1 0 0 0 0 0 0 
1 2 843 844 0.12 197 197 0 
2 2 626 627 0.16 40 40 0 
2 3 614 615 0.16 157 157 0 
3 3 644 645 0.16 98 98 0 
6 7 209 209 0 162 163 0.6 
6 8 212 212 0 – 10 0 
7 8 357 357 0 172 172 0 
9 2 434 434 0 473 473 0 
9 7 502 503 0.20 390 390 0 

10 3 61 61 0 510 510 0 
10 8 348 349 0.29 436 436 0 

Table 5. Comparison of normalized sectorial coordinate for the considered cross-section. 

Section point number 
(Figure 15) 

Sectorial coordinate ϖ  [cm2] 
[18] TONUS Deviation, % 

1 +3241 +3241 0 
2 –1483 –1483 0 
3 –1102 –1102 0 
7 –261 –261 0 
8 +249 +249 0 
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4. Conclusions 
The results of the presented study can be formulated as follow: 

1. The searching problem of shear stresses outside longitudinal edges of an arbitrary cross-section 
(including open-closed multi-contour cross-sections) of a thin-walled bar subjected to the general load case 
has been considered in the paper.  

2. The formulated problem has been transformed into a minimization problem of Castigliano’s functional 
subject to constraints-equalities of shear forces flows equilibrium formulated for cross-section branch points 
as well as subject to an equilibrium equation for the whole cross-section relating to longitudinal axes of the 
thin-walled bar. 

3. A detailed numerical algorithm intended to solve the searching problem of shear forces flows for an 
arbitrary cross-section of a thin-walled bar subjected to the general loading case using the mathematical 
apparatus of the graph theory has been developed. The algorithm is oriented on software implementation in 
systems of computer-aided design of the thin-walled structures. 

4. The developed algorithm has been implemented to the TONUS software, which is a satellite of the 
SCAD Office environment. 

5. Numerical examples for calculation of the thin-walled bars with open and open-closed multi-contour 
cross-sections have been considered in order to validate developed algorithm and verify calculation accuracy 
for sectorial cross-section geometrical properties and shear stresses caused by warping torque and shear 
forces.  

6. Validity of the calculation results obtained using the developed software has been proven by 
considered examples. 
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Аннотация. Разработка универсального программного комплекса для расчета и проектирования 
тонкостенных стержневых элементов конструкций остается актуальной задачей. Несмотря на 
превалирующее влияние нормальных напряжений на напряженно-деформированное состояние 
тонкостенных стержней, проверка несущей способности таких элементов должна выполняться, 
принимая во внимание также и значения касательных напряжений. В связи с этим рассмотрена задача 
поиска значений потоков касательных усилий для произвольного сечения (открыто-замкнутого 
многоконтурного сечения) тонкостенного стержня для общего случая нагружения. Сформулированная 
задача приведена к задаче математического программирования, а именно к задаче поиска значений 
неизвестных потоков касательных напряжений, обеспечивающих наименьшее значение функционала 
Кастильяно при удовлетворении ограничений равновесия потоков в точках ветвления сечения, а также 
при удовлетворении уравнения равновесия всего сечения тонкостенного стержня относительно 
продольной оси. Разработан детальный алгоритм численного решения сформулированной задачи с 
использованием математического аппарата теории графов, ориентированный на программную 
реализацию в системах автоматизированного проектирования тонкостенных стержневых систем. 
Выполнена программная реализация разработанного алгоритма в среде вычислительного комплекса 
SCAD Office в программе ТОНУС. С целью верификации разработанного алгоритма и проверки 
точности вычислений геометрических характеристик и касательных напряжений рассмотрены примеры 
расчета тонкостенных стержневых элементов открытого и открыто-замкнутого многоконтурного 
сечений. На рассмотренных примерах доказана достоверность результатов, получаемых при 
использовании разработанного программного обеспечения. 
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