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Abstract. A mathematical model, methods and algorithm to assess the spatial natural vibrations of 
axisymmetric structures are given in the paper taking into account the variability of the slope and structure 
thickness in the framework of the viscoelastic theory of shells. Dissipative properties of the material are taken 
into account by the Boltzmann-Volterra hereditary theory of viscoelasticity. The spatial natural vibrations of 
high-rise ventilation pipes of the Armenian nuclear power plant (NPP) and smokestacks of the Novo-Angren, 
Syrdarya, Azerbaijan and Ekibastuz thermal power plants (TPP) were studied taking into account the elastic 
and viscoelastic properties of their material. The reliability of results was verified by comparing the results 
obtained with the exact solution of a number of test problems, as well as by comparing the results with the 
results of field experiments. It was found that when the viscoelastic properties of structure material are taken 
into account, the decrement of their vibrations weakly depends on the values of eigenfrequency. Along with 
this, the dangerous range of earthquake frequencies includes not only the bending frequencies of the structure, 
but the spatial ones as well. 

1. Introduction  
As a rule, high-rise smoke and ventilation pipes, cooling towers of thermal and nuclear power plants 

(TPP and NPP) and protective shells of NPP are considered as axisymmetric structures. They are unique 
structures in their design features and geometric dimensions. Today, a great number of different axisymmetric 
high-rise structures are being operated and erected all over the world; one of such structures is a high-rise 
smoke stack, the height of which reaches up to 150 m–600 m [1, 2]. 

If for pipes of a height of about 50 m, the ratio of the wall thickness δ to the radius R of its middle surface 
at the base is δ/R=1/5÷1/7, then for the pipes of a height of 250–300 m – δ/R=1/12÷1/15, and for the pipes of 
a height of 420 m, the ratio δ/R is - δ/R≈1/23. With increasing height H and radius R, the wall thickness δ of 
the pipe grows slowly [1, 2]. Besides, along the height of the pipe, its radius, cone thickness and slope change, 
gradually moving from a conical section to a cylindrical one. 

In the existing building norms of many countries, an elastic cone-shaped console with a constant slope 
is used as a calculation model for such structures; it does not take into account such features as real geometry, 
structural features and dissipative properties of their material, which have a direct impact on the value of 
dynamic characteristics of structure. 

The reliability of such structures is largely determined by the accuracy of dynamic calculations, which 
in turn depends on the correct choice of structure design model and exact determination of its dynamic 
characteristics. 

In the dynamics of structures, the study of dynamic characteristics (i.e., eigenfrequencies, modes and 
decrements of vibration) of structures occupies a special place, since the dynamic characteristics are a 
passport of the structure and make it possible to judge the dynamic properties of the structure as a whole, 
without even examining its behavior under various effects. 
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Determination of eigenfrequencies and vibration modes even for elastic structures is a self-contained 
and rather difficult task. When accounting for dissipative properties of the material, the determination of 
structure dynamic characteristics is complicated by an order of magnitude. 

The first attempts at a theoretical description of dissipative properties of materials are associated with 
the names of Voigt, Maxwell, and Kelvin. Further, new models were proposed, and known models were 
improved to describe dissipative processes occurring in various systems during dynamic processes. However, 
the results obtained did not always agree well with experimental data. 

To eliminate this, other, more adequate models were used that take into account dissipative processes 
in the material, such as the model with hysteresis absorption or hereditary viscoelastic models of the 
Boltzmann-Volterra type, although their implementation is rather difficult and experimental materials are 
scarce [3–10]. 

Recently, when determining the natural frequencies and vibration modes of various high-rise structures, 
much attention has been paid to accounting for elastic properties of structure material only. 

For instance: 

− an experimental determination of dynamic characteristics of high-rise monolithic reinforced concrete 
buildings was considered in [11] and the results obtained were recommended for certification of buildings; 

− the energy method for estimating the cylindrical shells vibration was given in [12], where the effect 
of uniform external pressure and symmetrical boundary conditions on eigenfrequency of homogeneous and 
multilayer isotropic cylindrical shells was studied; 

− the oscillatory process of rigid composite cylindrical shells taking into account the bending behavior 
of stiffness ribs and their effect on eigenfrequencies of a shell, a change in its thickness and boundary 
conditions were studied in [13]; 

− in [14] the eigenfrequencies of a cylindrical shell were studied at different boundary conditions; 
− change in dynamic characteristics of the structure in order to detect damage to reinforced concrete 

building structures was considered in [15]; 
− to effectively evaluate the eigenfrequency and attenuation coefficient, a reliable mathematical model 

was proposed in [16] based on the use of the probability distribution function of eigenfrequency. 
− along with this, the stress-strain state, dynamic behavior, and wave phenomenon in various systems 

were studied in [17–26], taking into account the design features. 
These are just some of the studies devoted to the determination of dynamic characteristics of various 

designs and systems. 

The above review of well-known studies shows that the dynamic characteristics of spatial axisymmetric 
structures, such as ventilation and smokestacks of nuclear and heat power plants, are evaluated differently in 
different works, and each theory or method used has its advantages and disadvantages. 

Therefore, the development of an adequate model, effective methods and algorithm for assessing the 
dynamic characteristics of high-rise axisymmetric structures, taking into account their design features and 
dissipative properties of their material, is an urgent task of the mechanics of a deformable rigid body. 

The aim of this study is to develop an adequate mathematical model, methods and algorithm for solving 
the problem of spatial natural vibrations of viscoelastic axisymmetric structures using the theory of shells and 
studying the dynamic characteristics (i.e., frequency and decrement of vibrations) of real structures, as well 
as comparing the results with the results of field experiments. 

2. Methods  
Consider a high axisymmetric structure (Fig. 1), modeled as an axisymmetric viscoelastic shell with a 

rectilinear axis, with a variable slope and a variable wall thickness, the lower part of the structure (z=0) is on a 
rigid base, and the upper (z=H) is free. The spatial natural vibrations of the structure under consideration are 
investigated (Fig. 1). 

To determine the dynamic characteristics of the structures (Fig. 1), it is necessary to study spatial natural 
vibrations, i.e. the structure motion in which all of its points oscillate according to the same harmonic law - real 
or complex one - with different amplitudes in the absence of external influences, i.e. 

( ) ( ) tiexutxu ω−∗=
 ,  (1) 

Here ( ) ( ) ( ) ( ){ }xuxuxuxu rz
 ,, θ=∗ is the displacement vector of the structure point (Fig. 1) in the 

directions of the coordinate axes { }rzx ,,θ=


, respectively. 
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In the case of conservative systemsω , ( )xu ∗  are the frequency and natural vibration of the structures. 

In the case of non-conservative systems ω , ( )xu ∗  are the complex quantities, i.e. IR iωωω −= , the real 

part Rω  of the complex parameter ω  in its physical essence is the frequency of free damped vibrations of 
the structure, and the imaginary part Iω  accurate to the sign is equal to the damping coefficient of vibrations 
and determines the dissipative properties of the structure as a whole. 

 
Figure 1. Model of axisymmetric structure. 

To simulate the process of structure strain (Fig. 1) under its natural vibrations, the principle of virtual 
displacements is used according to which the sum of all active forces acting on the structure, including the 
inertia forces on virtual displacements, is zero, i.e.: 

( ) ( )∫∫ =++−+++++−
FF

ssssssss dFwwvvuudFNNNMMM 0~~~~~~ δδδρδεδεδεδγδγδγ θθθθθθθθ 
 (2) 

In this case, kinematic boundary conditions are used 

0=z : 0=u ; 0=
z
w
∂
∂

 (3) 

Here: 

( ) ( ) ( ) ( ){ }txwtxvtxutxu ,,,,,, 

= ; { }rzx ,,θ=


 are the coordinates of the point in cylindrical 
coordinates;  

wu ,,ν  are displacements in the directions of axes ( )rz ,,θ of cylindrical coordinates, respectively; 

θθθθ ssss NNNMMM ~,~,~,~,~,~
 are bending, torsional and membrane forces; θθθθ δεδεδεδγδγδγ ssss ,,,,,  

are isochronous variations in the curvature and components of the strain tensor; δ δ δu v w, , - variations of 
displacements in longitudinal, circumferential and tangent directions; ρ  is the density of the shell material. 

The relationship between the components of the forces and strains at an arbitrary point of the structure 
(Fig. 1) is taken in the form: 

( )θνεελ += ssN ~~
; ( )θνγγµ += ssM ~~

 

( )sN νεελ θθ +=
~~

; ( )sM νγγµ θθ += ~~
 ; 

θθ ε ss KN ~~ = ; θθ γ ss GM ~~ =  

(4) 

where 
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To describe the viscoelastic properties of the material, the Boltzmann-Volterra hereditary theory [5–8] 
is used according to which the long-term elastic modulus is expressed by the integral operator 

[ ] ( ) ( ) ( ) 







−Γ−= ∫

t
dttEE

0

~ ττϕτϕϕ  (5) 

E  is the instant modulus of elasticity of the material;  
)( τ−Γ t  is the kernel of relaxation. 

If the function ( )tϕ  has the form 

( ) ( ) tiett Rωψϕ −=  (6) 

where ψ  is a slowly changing function of time, i is an imaginary unit, Rω  is a real constant. 

Assuming that the integral terms in (5) are small compared to ( )tϕ , and using the freezing method [5, 
6, 8], the integral relation (5) can be reduced to the complex one, i.e.: 

( ) ( )[ ] }ψωωϕ R
s

R
с ГiГEE −−≈ 1][~

, (7) 

where 

( ) ( )

( ) ( ) ,sin

,cos

0

0
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∫

∫
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=

=

 (8) 

CS ГГ ,  are the sines and cosines of the image of Fourier kernel ( )τГ . 

The relationship between the components of the strain tensor and the displacement vector is described 
by Cauchy relations  

( )











−++−=

−+−=

−=

−+=

++=

=

v
rs

v
r

w
rs

w
r

rs
w

r
vw

r

s
w

v
rs

vu
r

uw
r

v
r

s
u

s

s

s

s

22

2

22

2

2

2

2

cossincossin12

sincos1

sin11

sincos11

ϕϕ
∂
∂ϕ

∂θ
∂ϕ

∂θ∂
∂γ

ϕ
∂
∂ϕ

∂θ
∂

∂θ
∂γ

∂
∂γ

ϕ
∂
∂

∂θ
∂ε

ϕϕ
∂θ
∂ε

∂
∂ε

θ

θ

θ

θ

 (9) 

Here s  is the coordinate measured along the neutral line of the shell; ϕ  is the angle between the 
tangent to the generatrix and the axis z of the shell; r  is the variable radius of the middle surface of the shell. 

Substituting (1) into (2), (3), (4), (9), taking into account (7), reduces the problem under consideration 
to a complex variational eigenvalue problem of the form 
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( )

( ) 02 =+++

++++++−

∫

∫
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0=z : 0=∗u ; 0=








 ∗

ds
dwδ  

(10) 

Now, the problem under consideration of finding the eigenfrequencies and natural modes of viscoelastic 

shell vibrations (Fig. 1) has been reduced to finding the constant 2ω - ( IR iωωω −= ) and vector function 

( )xu ∗ - ( ( ) ( ) ( )xuixuxu IR
 ∗∗∗ −= ), satisfying equation (10) for any kinematic virtual displacement ∗uδ . 

When solving the variational problem (10) on the spatial natural vibrations of a viscoelastic axisymmetric 
shell (Fig. 1), the solution along one coordinate is taken in the form of an exact trigonometric (in the 
circumferential direction at the angleθ ) dependence 

θθ nsusu cos)(),( =∗  

θθ nsvsv sin)(),( =∗  

θθ nswsw cos)(),( =∗  

(11) 

n = 012, , ,... is number of harmonics, the finite element discretization is used along coordinate s  with finite 
elements in the form of a truncated cone with 8 degrees of freedom. 

The finite element method (FEM) procedure described in [27] allows us to reduce the variational 
problem (10) to a complex algebraic eigenvalue problem for a structure (Fig. 1): 

[ ] [ ]( ){ } 02 =− zMK ω , (12) 

where [ ]K  is the complex stiffness matrix, the value of which depends on the sought for parameter Rω ; [ ]M  

is the matrix of the structure mass; IR iωωω −=  is the complex eigenfrequency; { } { } { }IR zizz −=  is the 
complex eigenvector corresponding to the eigenfrequency ω  of the structure. 

Usually, the order of the equations to be solved (12) exceeds 1500. Therefore, the eigenvalues 2ωλ =
of algebraic equation (12) are found using the Muller method [28], because there is no other, more efficient 
method for calculating complex eigenvalues, and the eigenvector { }z  is determined by the Gauss method 
using specially developed algorithms and a calculation program for IBM. The entire calculation process 
outlined in this section is automated and runs on an IBM PC. An author’s certificate of the Intellectual Property 
Agency under the Ministry of Justice of the Republic of Uzbekistan was obtained for the developed software. 

3. Results and Discussion 
3.1. Study of the method and algorithm convergence when solving model problems 
In this section, consider the convergence and the solutions accuracy obtained on model problems of 

natural vibrations for cylindrical shells, taking into account the elastic and viscoelastic properties of the 
material. The obtained solutions are compared with the known exact solutions. 

Task 1. 
The axisymmetric own vibrations of an elastic cylindrical shell are considered here. The boundary 

conditions are: both ends of the shell are hinged, i.e.: 

0;0;0 000 =′′==
=
=

=
=

=
=

Lz
z

Lz
z

Lz
z wwu  

(13) 

In the calculation, the following initial data were used: 

r1/r2=0.98;  L/r2=6.0. 

122



Magazine of Civil Engineering, 96(4), 2020 

Mirsaidov, M.M., Khudainazarov, Sh.O. 

The shell material is hypothetical, its elastic modulus is E, the density is ρ , and the Poisson's ratio is 
ν: E/ρ=1.0; ν=0.3. 

where r1,r2 are the inner and outer radii of the cylinder; L is the shell length. 

When solving the problem under consideration (at n=0 in expression (11)) we obtain axisymmetric 
eigenfrequencies of the shell. The task is to determine the axisymmetric frequencies of elastic cylindrical 
shells. 

Table 1 shows a comparison of axisymmetric eigenfrequencies of an elastic cylindrical shell obtained 
by exact solution and using the finite element method. 

An analysis of the comparison shows a satisfactory agreement between the numerical results and the 
exact solution. 

Task 2. 
The axisymmetric natural vibrations of a viscoelastic cylindrical shell with a hinged support at the ends 

are considered, i.e. the conditions are similar to (13). Geometrical and mechanical parameters of a shell, are 
similar to the ones in Task 1. 

The Boltzmann–Volterra hereditary theory with the Rzhanitsyn–Koltunov relaxation kernel in the form 
of [6–8] was used to describe the viscoelastic properties of the shell material: 

1)( −−= αβ tAetГ t  (14) 

with parameters A=0.008; β=0.05; α=0.1.  

The results obtained are presented in Table 1, which shows the complex eigenfrequencies of a 
viscoelastic cylindrical shell obtained by exact solution and using the finite element method. 

Table 1. Natural frequencies of an elastic and viscoelastic cylindrical shell. 
No. 

of eigen 
frequency 

Eigenfrequencies 
Elastic shell Viscoelastic shell 

Exact solution Solutions obtained 
using the developed 

algorithm 

Exact solution Solutions obtained using 
the developed algorithm 

1ω  0.5152 0.5153 0.5132-i3.090*10-4 0.5144-i3.096*10-4 

2ω  0.8959 0.8962 0.8925-i5.223*10-4 0.8944-i5.344*10-4 

3ω  
0.9732 0.9734 0.9695-i5.643*10-4 0.9716-i5.653*10-4 

4ω  0.9877 0.9880 0.9840-i5.724*10-4 0.9859-i5.731*10-4 

5ω  0.9930 0.9937 0.9896-i5.754*10-4 0.9899-i5.769*10-4 

 

Analysis of the solutions of test problems (tasks 1, 2) allows us to draw the following conclusions: 

The obtained eigenfrequencies and their comparison with the exact ones show satisfactory accuracy of 
the numerical results for elastic and viscoelastic shells. 

Summarizing the results obtained, it can be stated that the studies of the convergence of numerical 
solutions, and their comparison with the exact ones, show the reliability and validity of the developed methods 
and compiled software for PC-IBM when solving problems of natural vibrations of elastic and viscoelastic shell-
like structures. 

3.2. Study of spatial natural vibrations of high stacks taking into account elastic 
properties of the material 

In this section, consider the spatial natural vibrations (frequencies and modes) of high-rise smoke stacks 
of the Novo-Angren, Syrdarya, Azerbaijan and Ekibastuz TPPs and the ventilation pipe of the Armenian NPP 
according to the theory of shells in elastic statement using the developed methods and PC-IBM calculation 
programs. 
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In calculations, a high-rise smokestack is modeled by an elastic axisymmetric shell of variable thickness 
with separate variable slopes of both internal and external surfaces that describe the real geometry of the 
structures. 

All geometric dimensions of the considered structures are taken from design documentation. Some of 
geometric dimensions of these structures are as follows (H is height, R is outer diameter and h is pipe wall 
thickness, z is pipe mark from the base of the structure): 

Smokestack of the Novo-Angren TPP, H = 325.0 m; at the mark: z = 0.0 m: R = 19.0 m, h = 1.10 m; at 
the mark: z = 325.0 m: R = 8.35 m, h = 0.40 m. 

Smokestack of Syrdarya TPP, H = 325.0 m; at the mark: z = 0.0 m: R = 21.0 m, h = 0.85 m; at 
the mark: z = 325.0 m: R = 6.00 m, h = 0.22 m. 

Smokestack of the Azerbaijan TPP, H = 330.0 m; at the mark: z = 0.0 m: R = 19.0 m, h = 1.00 m; at 
the mark: z = 330.0 m: R = 7.52 m, h = 0.60 m. 

Smokestack of Ekibastuz TPP, H = 420.0 m; at the mark: z = 0.0 m: R = 22.0 m, h = 1.20 m; at 
the mark: z =  420.0 m, R = 7.10 m, h = 0.30 m. 

Ventilation pipe of the Armenian NPP, H = 150.0 m; at the mark: z = 0.0 m: R = 8.45 m, h = 0.90 m; at 
the mark: z = 150.0 m, R = 2.35 m, h = 0.16 m. 

The parameters of the physico-mechanical characteristics of the material under consideration are taken 
as: 

E = 2.9×104 MPa; ν = 0.17; ρ = 2.5 t/m3; 0.0)( =tГ . 

For all the aforementioned high-rise smokestacks, non-axisymmetric natural vibrations corresponding 
to different numbers (n) of harmonics were studied. At harmonic number n = 0, the spatial form splits into 
axisymmetric and torsional vibration modes. 

For axisymmetric vibrations of a shell in one-dimensional problem, there is a one-dimensional equivalent 
– longitudinal vibrations of a beam, and for torsional vibrations of the shell a one-dimensional equivalent is 
torsional vibration of a beam. At n = 1, for non-axisymmetric vibrations of the shell, there also exists a one-
dimensional equivalent – bending vibrations of a beam. At (n = 2,3, ...) non-axisymmetric vibrations of one-
dimensional equivalents do not exist. 

For all stacks listed above, at each harmonic (n = 0,1,2,3, ...), at least 5 eigenfrequencies were obtained 
and the corresponding vibration modes were constructed. 

Table 2 shows the spatial (at n = 0,1,2,3, ...) eigenfrequencies for some high-rise stacks obtained using 
the developed methods and software. 

Table 2. Frequency of spatial natural modes of vibration (rad/sec) of structures (high-rise stacks) 
obtained in elastic statement. 

No. of 
harmonics 

Novo-Angren TPP Ekibastuz TPP Syrdarya TPP 

1ω  2ω  3ω  1ω  2ω  3ω  1ω  2ω  3ω  

n=0 torsion. 20.10 34.92 55.70 17.76 29.05 45.36 24.42 39.92 60.43 

n=0 axisym. 24.66 49.78 81.84 20.51 40.04 65.48 27.43 53.56 87.16 

n=1 1.89 6.30 14.29 1.27 4.09 9.20 2.96 7.59 16.38 

n=2 13.02 15.75 19.29 11.92 14.69 16.59 11.23 15.85 19.65 

n=3 36.89 38.31 40.11 26.99 35.86 39.31 32.30 35.05 44.31 

n=4 68.51 70.67 73.48 54.54 60.32 69.02 56.79 64.01 73.19 

n=5 107.35 109.18 116.12 76.07 90.20 97.38 86.63 98.79 105.06 
(tr – torsional, as – axisymmetric frequencies) 

In the studies conducted at the Institute of Earth Physics of the Academy of Sciences of the Russian 
Federation [29] it was found that the predominate periods of soil vibrations during strong earthquakes are 
within the range of 0.1–0.5 sec. 

When analyzing the values of obtained eigenfrequencies of the structures under consideration, there is 
a probability that they would coincide with the ground motion frequency during the earthquake; this can lead 
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to a dangerous phenomenon – resonant vibrations of a pipe. This indicates that in assessing the seismic 
resistance of such structures, one cannot limit oneself by only a few bending eigenmodes of vibration (at n=1).  

3.3. Study of spatial own vibrations of high-rise stacks taking into account viscoelastic 
properties of the material 

In this section, spatial natural vibrations (frequencies, modes and decrements of vibrations) of the above 
structures in viscoelastic statement (i.e. considering viscoelastic properties of the structure material) are 
studied using the developed methods and PC-IBM computation. The structures under consideration are 
modeled by a viscoelastic axisymmetric shell with a variable slope and thickness, which makes it possible to 
take into account their real geometry. 

To describe the viscoelastic properties of the material, the Boltzmann-Volterra hereditary theory with 
the Rzhanitsyn-Koltunov kernel is used (14). 

The choice of viscoelastic models to describe the properties of structure material (concrete) is explained 
by the closeness of experimental and theoretical results obtained for the stress state of concrete [30]. The 
parameters of the relaxation kernel are found on the basis of the technique [8], the essence of which lays in 
the comparison of experimental creep curve and the theoretical curve. In this work, the theoretical strain values 
for various time instants are tabulated in detail and the curves are plotted for a wide range of kernel parameters 
A, β, α. 

To determine the values of the kernel parameters for concrete, several experimental creep curves for 
concrete, presented in [30], were processed. By superimposing the obtained experimental curve on the 
assemblage (set) of theoretical curves [8] and shifting it to the abscissa and ordinate axes, we find the one 
theoretical curve that coincides with experimental one. The values corresponding to this theoretical curve are 
taken as the sought for values of the kernel parameters.  

In the problem to be solved below, the parameters of the relaxation kernel (14) for concrete were used, 
obtained with the above method from experimental creep curves given in [30]: 

A=0.0194; β=0.00000014; α=0.075. 

All geometric dimensions of the above structures are taken from design documentation. Some 
dimensions of these structures are given in section 3.2 of this paper. 

Table 3 shows the complex eigenfrequencies of spatial vibrations obtained for the above listed 
structures using the developed methods and software taking into account viscoelastic properties of the 
structure material. 

Table 3. The frequency of spatial natural vibrations (rad/sec) of structures (high-rise stacks) 
obtained in viscoelastic statement. 

No. of 
harmonic

s 

Novo-Angren TPP  Ekibastuz TPP  Syrdarya TPP  

ω1=ω1R

-iω1I 
ω2=ω2R

-iω2I 
ω3=ω3R

-iω3I 
ω1=ω1R

-iω1I 
ω2=ω2R

-iω2I 
ω3=ω3R

-iω3I 
ω1=ω1R

-iω1I 
ω2=ω2R

-iω2I 
ω3=ω3R

-iω3I 
n=0 

torsion. 
22.14- 
-i0.32 

44.46- 
-i0.60 

74.22- 
-i0.95 

18.38- 
-i0.27 

36.09- 
-i0.49 

59.27- 
-i0.77 

24.64- 
-i0.35 

48.40- 
-i0.64 

79.09- 
-i1.01 

n=0 
axisym. 

18.01- 
-i0.26 

31.44- 
-i0.43 

50.36- 
-i0.67 

15.89- 
-i0.24 

26.12- 
-i0.37 

40.94- 
-i0.55 

21.02- 
-i0.31 

35.99- 
-i0.49 

54.67- 
-i0.72 

n=1 1.66- 
-i0.03 

5.58- 
-i0.09 

12.76- 
-i0.19 

1.10- 
-i0.02 

3.61- 
-i0.06 

8.18- 
-i0.13 

2.19- 
-i0.04 

6.74- 
-i0.11 

14.65- 
-i0.22 

n=2 12.55- 
-i0.19 

14.04- 
-i0.21 

17.54- 
-i0.26 

10.62- 
-i0.16 

13.12- 
-i0.19 

14.84- 
-i0.22 

10.01- 
-i0.15 

14.17- 
-i0.21 

17.60- 
-i0.26 

n=3 33.22- 
-i0.46 

34.53- 
-i0.47 

36.16- 
-i0.49 

24.25- 
-i0.34 

32.29- 
-i0.45 

36.31- 
-i0.49 

29.07- 
-i0.41 

31.57- 
-i0.44 

39.98- 
-i0.54 

n=4 64.29- 
-i0.84 

64.31- 
-i0.83 

66.58- 
-i0.86 

49.38- 
-i0.66 

54.55- 
-i0.72 

62.48- 
-i0.81 

51.34- 
-i0.68 

57.94- 
-i0.76 

66.32- 
-i0.86 

n=5 98.43- 
-i1.23 

100.31- 
-i1.25 

105.50- 
-i1.31 

68.94- 
-i0.89 

81.86- 
-i1.04 

93.69- 
-i1.18 

79.85- 
-i1.02 

91.43- 
-i1.15 

97.88- 
-i1.22 

 

The real parts ( Rω ) of eigenfrequencies ( IR iωωω −= ) given in Table 3 are the frequencies of 
structure natural vibrations and the imaginary parts ( Iω ) carry information about the damping coefficients of 
structure vibrations. 
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Comparison of the results presented in Table 2 (elastic statement) and Table 3 (viscoelastic statement), 
shows that the real part of the complex frequencies is less than the corresponding values of the 

eigenfrequencies obtained in elastic statement, and the logarithmic decrement 
R

I
ω
ω

πδ 2−=
 

slightly 

decreases with increasing frequency number. This means that an account for viscoelastic properties of the 
structure material leads to a weak dependence of the logarithmic decrement of vibrations on frequency. 

Table 4 shows the comparison between the periods of bending vibrations obtained by one-dimensional 
theory (in elastic statement) and by the theory of shells (in elastic and viscoelastic statements) and the results 
of field experiments [17, 31]. 

Table 4. Periods of bending vibrations of various smokestacks. 

High-rise smoke 
stacks 

No. 
of period 

Vibrations periods (sec) 

 Elastic statement Viscoelastic 
statement 

Field 
experiment 

 One-dimensional 
theory 

Theory of shells 
(at n=1) 

Theory of shells 
(at n=1) 

 

Novo-Angren TPP T1 3.26 3.32 3.8 3.4 

T2 0.91 0.99 1.12 1.0 

T3 0.38 0.44 0.49 0.5 

T4 0.21 0.25 0.28 0.3 

Syrdarya TPP T1 2.5 2.12 2.88 2.8 

T2 0.80 0.83 0.93 0.9 

T3 0.33 0.38 0.42 0.4 

 T4 0.19 0.23 0.25 0.2 

Armenian NPP T1 1.56 1.42 2.03 1.6 

T2 0.46 0.46 0.52 0.5 

T3 0.21 0.22 0.24 0.2 

T4 0.11 0.12 0.14 - 
 

An analysis of the above results shows that the values of bending vibrations periods obtained in field 
experiments [17, 31] and the ones found theoretically by the developed method are quite close. 

Table 5 shows the values of logarithmic decrement of vibrations of the Novo-Angren TPP high 
smokestack obtained by field experiment [17] and the ones found theoretically for the three lower bending 
modes (at n=1), using the developed methods and software that take into account viscoelastic properties of 
the structure material. 

Table 5. Logarithmic decrement of bending vibrations of the Novo-Angren TPP smokestack. 

Decrement definition method Logarithmic decrement 
  δ1 δ2 δ3 

Experimental 0.15 0.25 0.37 
Theoretical 0.121 0.102 0.094 

 

Significant differences in the values of experimentally and theoretically determined logarithmic 
decrement (Table 5), especially for the second and third modes, are apparently explained by a failure to 
consider dry friction and energy entrainment from the structure to infinity. 

4. Conclusions 
1. A mathematical model, methods and algorithm to study the spatial natural vibrations of axisymmetric 

structures, with account for dissipative properties of the material are developed based on the hereditary theory 
of viscoelasticity in the framework of the theory of shells. 
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2. The reliability of the developed methods and algorithms was verified by solving a number of test 
problems and comparing the results obtained by known exact solutions and the results of field experiments. 

3. The spatial natural vibrations of a number of real axisymmetric structures (ventilation and 
smokestacks of nuclear power plants and thermal power plants) were studied taking into account the elastic 
and viscoelastic properties of the structure material of the structure. 

4. It was revealed that not only the frequencies of bending modes of vibration are in the dangerous 
range of earthquakes frequencies, but also some other modes of spatial vibrations of structures, determined 
by the theory of shells. 

5. It was found that the value of the logarithmic decrement of structure vibrations when accounting for 
viscoelastic properties of the structure material weakly depends on eigenfrequencies of vibrations. 
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