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Abstract. Numerical optimization and the finite element method have been developed together to make 
possible the emergence of structural optimization as a potential design tool. The main research goal of this 
paper is the development of mathematical support and a numerical algorithm to solve parametric optimization 
problems of structures with orientation on software implementation in a computer-aided design system. The 
paper considers parametric optimization problems for bar structures formulated as nonlinear programming 
ones. The method of the objective function gradient projection onto the active constraints surface with 
simultaneous correction of the constraints violations has been used to solve the parametric optimization 
problem. Equivalent Householder transformations of the resolving equations of the method have been 
proposed. They increase numerical efficiency of the algorithm developed based on the considered method. 
Additionally, proposed improvement for the gradient projection method also consists of equivalent Givens 
transformations of the resolving equations. They ensure acceleration of the iterative searching process in the 
specified cases described by the paper due to decreasing the amount of calculations. The comparison of the 
optimization results of truss structures presented by the paper confirms the validity of the optimum solutions 
obtained using proposed improvement of the gradient projection method. The efficiency of the proposed 
improvement of the gradient projection method has been also confirmed taking into account the number of 
iterations and absolute value of the maximum violation in the constraints. 

1. Introduction 
Over the past 50 years, numerical optimization and the finite element method have individually made 

significant advances and have together been developed to make possible the emergence of structural 
optimization as a potential design tool [1]. In recent years, great efforts have been also devoted to integrate 
optimization procedures into the CAD facilities. With these new developments, lots of computer packages are 
now able to solve relatively complicated industrial design problems using different structural optimization 
techniques [2]. 

Applied optimum design problems for bar structures in some cases are formulated as parametric 
optimization problems, namely as searching problems for unknown structural parameters, which provide an 
extreme value of the specified objective function in the feasible region defined by the specified constraints. In 
this case, structural optimization is performed by variation of the structural parameters when the structural 
topology, cross-section types and node type connections of the bars, the support conditions of the bar system, 
as well as loading patterns and load design values are prescribed and constants.  

Kibkalo et al. in the paper [3] formulated a parametric optimization problem for thin-walled bar structures 
and considered methods to solve them. The searching for the optimum solution has been performed by varying 
the structural parameters providing the required load-carrying capacity of structural members and the minimum 
value of manufacturing costs. 

Alekseytsev has described the process of developing a parametrical-optimization algorithm for steel 
trusses in the paper [4]. Parametric optimization has been performed taking into account strength, stability and 
stiffness constraints formulated for all truss members. The objective function has been formulated depending 
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on the specific manufacturing of the truss panel joints in term of the manufacturing cost calculated based on 
the labor costs and materials used.  

Serpik et al. in the paper [5] developed an algorithm for parametric optimization of steel flat rod systems. 
The optimization problem has been formulated as a structural weight minimization problem taking into account 
strength and displacement constraints, as well as overall stability constraints. The cross-sectional dimensions 
of the truss members and the coordinates of the truss panel joints have been considered as design variables. 
The structural analysis of internal forces and displacements for considered structures has been performed 
using the finite element method. An iterative procedure for searching for optimum solution has been proposed 
in [6]. 

Sergeyev et al. in the paper [7] formulated a parametric optimization problem with constraints on 
faultless operation probability of bar structures with random defects. The weight of the bar structures has been 
considered as the objective function. Initial global imperfections have been considered as small independent 
random variables distributed according to normal distribution law, as well as buckling load value has been also 
considered as a random variable. 

The mathematical model of the parametric optimization problem of structures includes a set of design 
variables, an objective function, as well as constraints, which reflect generally non-linear dependences 
between them [8]. If the objective function and constraints of the mathematical model are continuously 
differentiable functions, as well as the search space is smooth, then the parametric optimization problems are 
successfully solved using gradient projection non-linear methods [9]. The gradient projection methods operate 
with the first derivatives or gradients only both of the objective function and constraints. The methods are 
based on the iterative construction of such a sequence of the approximations of design variables that provides 
convergence to the optimum solution (optimum values of the structural parameters) [10]. 

Additionally, a sensitivity analysis is a useful optional feature that could be used in scope of the 
numerical algorithms developed based on the gradients methods [11]. Thus, in the paper [12] Sergeyev et al. 
formulated a parametric optimization problem of linearly elastic space frame structures taking into account the 
stress and multiple natural frequency constraints. The cross-sectional parameters of structural members as 
well as node positions of the bar structures has been considered as design variables. The sensitivity analysis 
of multiple frequencies has been performed using analytic differentiation with respect to the design variables. 
The optimal design of the structure has been obtained by solving a sequence of quadratic programming 
problems. 

Although many papers are published on the parametric optimization of structures, the development of 
a general computer program for the design and optimization of structures according to specified design codes 
remains an actual task. Therefore, the main research goal of this paper is the development of mathematical 
support and a numerical algorithm to solve parametric optimization problems of structures with orientation on 
software implementation in a computer-aided design system.  

One of the effective methods to solve parametric optimization problems for structures is gradient 
projection methods, as shown by the review of scientific researches presented above. That is why, in this 
paper, a gradient projection method is considered as investigated object. The following research tasks are 
formulated: to propose an improvement of the gradient projection method that ensures the increase of the 
numerical efficiency of the algorithm developed based on the considered method, as well as the acceleration 
of the iterative searching process due to decreasing the amount of calculations. 

2. Methods 
2.1. Parametric optimization problem formulation 

Let us consider a parametric optimization problem of a structure consisting of bar members. It can be 
formulated as presented below: to find optimum values for geometrical parameters of the structure, bar’s 
cross-section dimensions and initial pre-stressing forces introduced into the redundant members of the bar 
system, which provide the extreme value of the determined optimality criterion and satisfy all load-bearing 
capacities and stiffness requirements. We assume, that the structural topology, cross-section types and node 
type connections of the bars, the support conditions of the bar system, as well as loading patterns and load 
design values are prescribed and constants. 

The formulated parametric optimization problem can be stated as a non-linear programming task in the 

following mathematical terms: to find unknown structural parameters { }TX Xι=


, 1, XNι = , providing the 
least value of the determined objective function: 

( ) ( )* *
  
min

X
f f X f X

∈ℑ
= =





 

, (1.1) 
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in a feasible region (search space) ℑ  defined by the following system of constraints: 

( ) ( ){ }0 | 1, ECX X Nκψ κ= = =ψ
 

; (1.2) 

( ) ( ){ }0 | 1,EC ICX X N Nηφ η= ≤ = +φ
 

; (1.3) 

where X


 is the vector of the design variables (unknown structural parameters); ,f  κψ , ηϕ  are the 

continuous functions of the vector argument; *X


 is the optimum solution or optimum point (the vector of 
optimum values of the structural parameters); *f  is the optimum value of the optimum criterion (objective 

function); ECN  is the number of constraints-equalities ( )Xκψ


, whose define hyperplanes of the feasible 

solutions; ICN  is the number of constraints-inequalities ( )Xηϕ


, whose define a feasible region in the design 

space ℑ . 

The vector of the design variables can consist of a set of unknown geometrical parameters of the 
structure, a set of unknown cross-sectional dimensions of the structural members, as well as a set of unknown 
initial pre-stressing forces introduced into the specified redundant members of the structure. 

The specific technical-and-economic index (material weight, material cost, construction cost etc.) or 
another determined indicator can be considered as the objective function Eq. (1.1) taking into account the 
ability to formulate its analytical expression as a function of design variables X



. 

Load-bearing capacities constraints (strength and stability inequalities) for all design sections of the 
structural members subjected to all design load combinations at the ultimate limit state as well as 
displacements constraints (stiffness inequalities) for the specified nodes of the bar system subjected to all 
design load combinations at the serviceability limit state should be included into the system of constraints 
Eqs. (1.2) – (1.3). The design internal forces in the bar structural members used in the strength and stability 
inequalities of the system Eqs. (1.2) – (1.3) are considered as state variables depending on design variables 
X


 and can be calculated from the linear equations system of the finite element method [13]. The node 
displacement of the bar system used in stiffness inequalities of the system Eqs. (1.2) – (1.3) are also 
considered as state variables depending on design variables X



 and can be also calculated from the linear 
equations system of the finite element method [13]. Additional requirements, whose describe structural, 
technological and serviceability particularities of the considered structure, as well as constraints on the building 
functional volume can be also included into the system Eqs. (1.2) – (1.3). 

2.2. An improved gradient projection method for solving  
the parametric optimization problem 

The parametric optimization problem stated as non-linear programming task by Eqs. (1.1) – (1.3) can 
be solved using a gradient projection method. The method of objective function gradient projection onto the 
active constraints surface with simultaneous correction of the constraints violations ensures effective 
searching for solution of the non-linear programming tasks occurred when optimum designing of the structures 
[14]. 

The gradient projection method operates with the first derivatives or gradients only of both the objective 
function Eq. (1.1) and constraints Eqs. (1.2) – (1.3). The method is based on the iterative construction of such 

sequence Eq. (2.1) of the approximations of design variables { }TX Xι=


, 1, XNι = , that provides the 
convergence to the optimum solution (optimum values of the structural parameters): 

1k k kX X X∆
  

+ = + , (2.1) 

where { } ,  1,T
k XX X Nι ι


= =  is the current approximation to the optimum solution *X


 that satisfies both 
constraints-equalities Eq. (1.2) and constraints-inequalities Eq. (1.3) with the extreme value of the objective 

function Eq. (1.1); { } ,  1,T
k XX X Nι ι∆ ∆


= = , is the increment vector for the current values of the design 

variables kX


; k  is the iteration’s index. The start point of the iterative searching process 0kX


=  can be 
assigned as engineering estimation of the admissible design of the structure.  

The active constraints only of constraints system Eqs. (1.2) – (1.3) should be considered at each iteration. 
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A set of active constraints numbers A  calculated for the current approximation kX


 to the optimum solution 
(current design of the structure) is determined as: 

= ∪A κ η , ( ){ } tXκκ ψ ε= ≥ −κ


, ( ){ }  EC tN Xηη φ ε= + ≥ −η


. (2.2) 

where ε  is a small positive number introduced here in order to diminish the oscillations on movement 
alongside of the active constraints surface. 

The increment vector kX∆


 for the current values of the design variables kX


 can be determined by 
the following equation: 

k k
kX X X⊥∆ = ∆ + ∆



  

, (2.3) 

where kX⊥∆


 is the vector calculated subject to the condition of elimination the constraint’s violations; kX∆




 is 

the vector determined taking into consideration the improvement of the objective function value. Vectors kX∆




 

and kX⊥∆


 are directed parallel and perpendicularly accordingly to the subspace with the vectors basis of the 
linear-independent constraint’s gradients, such that: 

( ) 0
Tk kX X⊥∆ ∆ =



 

. (2.4) 

The values of the constraint’s violations for the current approximation kX


 of the design variables are 
accumulated into the following vector: 

( ) ( )( );  X Xκ ηψ κ φ η= ∀ ∈ ∀ ∈V κ η
 

.  

Let us introduce a set L , ⊆L A , of the constraint’s numbers, such that the gradients of the constraints 

at the current approximation kX


 to the optimum solution are linear-independent. 

Component kX⊥∆


 is calculated from the equation presented below: 

[ ]kX ϕ µ⊥ ⊥∆ = ∇




. (2.5) 

where [ ]ϕ∇  is the matrix that consists of components 
X
κ

ι

ψ∂
∂

 and 
X
η

ι

φ∂
∂

, here 1, XNι = , κ ∈L , η∈L ; 

µ⊥


 is the column-vector that defines the design variables increment subject to the condition of elimination the 

constraint’s violations. Vector µ⊥


 can be calculated as presented below. 

In order to correct constraint’s violations V , vector kX⊥∆


 to a first approximation should also satisfy 

Taylor’s theorem for the continuously differentiable multivariable function in the vicinity of point kX


 for each 

constraint from set L , namely: 

[ ]T kXϕ ⊥− = ∇ ∆V


. (2.6) 

With substitution of Eq. (2.5) into Eq. (2.6) we obtain the system of equations to determine column-
vector µ⊥



: 

[ ] [ ]Tϕ ϕ µ⊥∇ ∇ = −V

. (2.7) 

Component kX∆




 is determined using the following equation: 

[ ]( )kX p fξ ξ ϕ µ∆ = × = ∇ − ∇
 




 

, (2.8) 

where f∇


 is the vector of the objective function gradient in the current point (current approximation of the 

design variables) kX


; p  is the projection of the objective function gradient vector onto the active constraints 

surface in the current point kX


; µ




 is the column-vector that defines the design variable’s increment subject 
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to the improvement of the objective function value. Column-vector µ




 can be calculated approximately using 

the least-square method by the following equation: 

[ ] fϕ µ∇ ≈ ∇






, (2.9) 
or from the equation presented below: 

[ ] [ ] [ ]T T fϕ ϕ µ ϕ∇ ∇ = ∇ ∇




 ; (2.10) 
where ξ  is the step parameter, which can be calculated subject to the desired increment f∆ of the objective 
function on movement along the direction of the objective function anti-gradient. The increment f∆  can be 

assign as 5...25% from the current value of the objective function ( )tf X


: 

( )Tf f fξ∆ = ∇ ∇
 

, 
( )T

f

f f
ξ ∆
=

∇ ∇
 

, (2.11) 

where in case of minimization Eq. (1.1) f∆  and ξ  accordingly have negative values. The parameter ξ  can be 
also calculated using the dependency presented below: 

( )T
f

p f
ξ ∆
=

∇




, (2.12) 

that follows from the condition of attainment the desired increment of the objective function f∆  on the 
movement along the direction of the objective function anti-gradient projection onto the active constraints 
surface. Step parameter ξ  can be also selected as a result of numerical experiments performed for each type 
of the structure individually [15, 16]. 

Fig. 2.1 presents a graphical illustration for step to the point 1kX +


 depending on location of the current 

approximation kX


 in the two-dimension search space.  

Using Eq. (2.5) and Eq. (2.8), Eq. (2.3) can be rewritten as presented below: 

[ ] [ ]( )  kX fϕ µ ξ ϕ µ⊥∆ = ∇ + ∇ − ∇





 

, (2.13) 

or 
[ ]( )  kX fξ ϕ µ ξ µ⊥∆ = ∇ + ∇ −






  , (2.14) 

where column-vectors µ⊥


 and µ




 are calculated using Eq. (2.7) and Eq. (2.9) or Eq. (2.10), respectively. 

 

Figure 2.1. Step to the next point 1kX +


 depending on location of the current approximation kX


 for 

two design variables 1X  and 2X . 

The linear-independent constraints of the system Eqs. (1.2) – (1.3) should be detected when 
constructing the matrix of the active constraints gradients [ ]ϕ∇  used by Eq. (2.7) and Eq. (2.9) or Eq. (2.10). 
Selection of the linear-independent constraints can be performed based on the equivalent transformations of 
the resolving equations of the gradient projection method using the non-degenerate transformation matrix  
H , such that the sub-diagonal elements of the matrix [ ]ϕ∇H  equal to zero. Besides, 
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T =H H I ; (2.15) 

2 1t i= × × × × ×H H H H H  ; (2.16) 

where I  is the unit matrix; t  is the total number of the linear-independent gradients of the active constraints, 

iH  is the transformation matrix, such that T
i i =H H I , at the same time the sub-diagonal element are equal 

to zero in matrix [ ]1 2 1i i ϕ−× × × × × ∇Η Η Η Η  for column’s numbers 1,  i . Described conditions are 
satisfied by the orthogonal matrix of the elementary mapping (Householder’s transformation) [17, 18].  

Let us present here the following algorithm to form set L  and to construct matrix [ ]ϕ∇H . 

1. 0i = , =∅L  and [ ] [ ]0 ϕ∇ = ∇Φ  should be assumed, where [ ]ϕ∇  is the matrix that comprises 

from the column-gradients of all active constraints. All columns of matrix [ ]0∇Φ  should be marked as ‘not 

used’ (or linear-independent). 

2. 1i i= + . 

3. Among all ‘not used’ columns of matrix [ ] 1i−∇Φ , whose correspond to the constraints-equalities 

Eq. (1.2), one j th column with extreme value of the specified criterion should be selected (e.g., the following 

criterion 2 2XN

j kj
k i

g
=

= ∑

 can be considered as such criterion, where kjg  are the j th column’s components of 

matrix [ ] 1i−∇Φ ). At the same time, all k th columns of matrix [ ] 1i−∇Φ , for whose the following inequality 

2
1k ε≤  met, should be marked as ‘used’, here 1ε  is a small positive number. In case when no constraints-

equalities exist or all constraints-equalities Eq. (1.2) are marked as ‘used’, the selection of j th column should 

be performed among all ‘not used’ columns of matrix [ ] 1i−∇Φ , whose correspond to the constraints-

inequalities Eq. (1.3). If 2
1j ε≤

, then generation of set L  and matrix [ ]ϕ∇H  is finished. 

[ ] [ ] 1iϕ ϕ −∇ = ∇H . In case of 2
1j ε≤

 and 1i =  (i. e. =∅L ), there is a contradiction in the system of 

constraints Eqs. (1.2) – (1.3). In other case, moving to the next step performs. 

4. k th number of the constraint, that corresponds to the j th column number, should be included into set 

L , { }k← +L L . 

5. Calculate [ ] [ ] 1ii i−∇ = ∇Φ H Φ . It is reasonable to execute the multiplication only for ‘not used’ 

columns. It should be noted, when using Householder’s transformation matrix iH  is not constructed evidently 

[18]. At the same time, matrix [ ]i∇Φ  can be constructed within the ranges of matrix [ ] 1i−∇Φ  when no 

additional memory is needed. 

6. If 1i = , then [ ] ji qϕ∇ =


, where jq  is j th column-vector of matrix [ ]i∇Φ . When 1i >  [ ]iϕ∇  is 

constructed using extension of the matrix [ ] 1iϕ −∇  by the column-vector jq . j th column of matrix [ ]i∇Φ  is 

selected as ‘used’, then moving to the step 2 performs. 

Using Householder’s transformations described above triangular structure of the nonzero elements of 
matrix [ ]ϕ∇H  is formed step-by-step. Besides, Eq. (2.7) and Eq. (2.9) can be rewritten as follow: 

[ ]( ) [ ]( )T Tϕ ϕ µ⊥∇ ∇ = −H H V

; (2.17) 

  
[ ] fϕ µ∇ ≈ ∇H H







. (2.18) 
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In order to calculate column-vectors µ⊥


 and µ




, it is required only to perform forward and backward 

substitutions in Eq. (2.17) and Eq. (2.18).  

To accelerate the convergence of the minimization algorithm presented above, h th columns should be 
excluded from matrix [ ]ϕ∇H . These columns correspond to those constraints from Eq. (1.3), for which the 
following inequality satisfies: 

0h hµ ξ µ⊥ − × >


. (2.19) 

Actually, if 2 0h hµ ξ µ⊥ − >


, then the return onto the active constraints surface from the feasible region 

ℑ  is performed with simultaneous degradation of the objective function value (see Fig. 2.2, b). At the same 
time, in case of: 

1 0h hµ ξ µ⊥ − <


, (2.20) 
both the improvement of the objective function value and the return from the inadmissible region onto the 
active constraints surface are performed (see Fig. 2.2, а). 

 
                                                               a                              b 

Figure 2.2. The selection of the constraints-inequalities:  
a – 1 0h hµ ξ µ⊥ − <



; b – 2 0h hµ ξ µ⊥ − >


. 

When excluding h th columns from matrix [ ]ϕ∇H  corresponded to those constraints for whose 

Eq. (2.13) is satisfied, the matrix [ ]( )red
ϕ∇H  with a broken (non-triangular) structure of the non-zero 

elements is obtained. The set L  of the linear-independent active constraints numbers transforms into the set 

redL  respectively. At the same time, the vector of the constraint’s violations V  reduced into the vector redV  
accordingly. 

In order to restore triangular structure of the matrix [ ]( )red
ϕ∇H  with zero sub-diagonal elements, 

Givens transformations (Givens rotations) [19, 18] can be used. Givens transformations for the matrix 

[ ]( )red
ϕ∇H  consist of construction such square matrix wzG , for which corresponded wz th element of 

matrix [ ]( )wz red
ϕ∇G H  returns zero (see Fig. 2.3) [20]. Since 2 2 1c s+ =  by definition, it follows: 

( )Twz wz =G G I . (2.21) 

An obvious method to calculate c  and s  for d th non-zero sub-diagonal element and for a th diagonal 
element is presented below: 

2 2 2 2
,   ;a dc s

a d a d
= =

+ +
 (2.22) 

 
                                            wzG  [ ]( )red

ϕ∇H  [ ]( )wz red
ϕ∇G H  

Figure 2.3. Scheme for Givens rotations (non-zero elements of the matrixes are hatched). 
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The Givens matrix G  can be calculated similarly to the matrix H  using the following equation: 

2 1iγ= × × × × ×G G G G G  . (2.23) 
where γ  is the number of the Givens transformations. So, Givens transformations should be executed several 

times (with different values z  and w ), while the matrix [ ]( )wz red
ϕ∇G H  has no all zero sub-diagonal 

elements (for example presented by Fig. 2.3, 5γ = ). 

Taking into account Givens transformations, Eq. (2.17) and Eq. (2.18) for column-vectors ( )redµ⊥


 and 

( )red
µ




 can be rewritten as: 

[ ]( ) [ ]( ) ( )T T T
redredredred

ϕ ϕ µ⊥∇ ∇ = −H G G H V

; (2.24) 

  

[ ]( ) ( )red red
fϕ µ∇ ≈ ∇G H GH







; (2.25) 

and the main resolving equation of the gradient projection method Eq. (2.13) and Eq. (2.14) can be rewritten 
as presented below: 

[ ]( ) ( ) [ ]( ) ( )( )k redred red red
X fϕ µ ξ ϕ µ⊥∆ = ∇ + ∇ − ∇H H






 

, (2.26) 

or 

[ ]( ) ( ) ( )( ) k redred red
X fξ ϕ µ ξ µ⊥∆ = ∇ + ∇ −H






 

. (2.27) 

The proposed improvement for the method of the objective function gradient projection onto the active 
constraints surface with simultaneous correction of the constraints violations consists of equivalent 
transformations of the resolving equations using Householder transformations. The transformations with 
matrix H  presented by Eq. (2.24) and Eq. (2.25) of the resolving equations of the gradient projection method 
Eq. (2.7) and Eq. (2.9) increase the numerical efficiency of the algorithm developed based on the gradient 
projection method described above. 

Additionally, the proposed improvement for the gradient projection method includes equivalent 
transformations of the resolving equations using Givens rotations. The transformations with matrix G  
presented by Eq. (2.24) and Eq. (2.25) ensure acceleration of the iterative searching process Eq. (2.1) in case 
when Eq. (2.19) takes into account due to decreasing the amount of calculations. 

It should be noted that the lengths of the gradient vectors for the objective function Eq. (1.1), as well as 
for constraints Eqs. (1.2) – (1.3), remain as they were in scope of the proposed equivalent transformations 
ensuring the dependability of the optimization algorithm. 

The determination the convergence criterion is the final question when using the iterative searching for 
the optimum point Eq. (2.1) described above. Considering the geometrical content of the gradient steepest 
descent method, we can assume that at the permissible point kX



 the component of the increment vector 
kX∆




 for the design variables should be vanish, 0kX∆ →




, in case of approximation to the optimum solution 

of the non-linear programming task presented by Eqs. (1.1) – (1.3). So, the following convergence criterion of 
the iterative procedure Eq. (2.1) can be assigned: 

( )2, 1
1

  
XN

k kX X ι
ι

ε
=

∆ = ∆ <∑
 



, (2.28) 

where 1ε  is a small positive number. 

Taking into consideration Eq. (2.28), let us formulate the following stop criteria in the iterative searching 
procedure of Eq. (2.1). 

Stop criterion 1: when the objective function gradient in the current approximation kX


 is close to zero 
indicating on extreme character of the current approximation, as well as there are no violated constraints: 

,

;fε ε

= ∅

− ≥ ∇ ≥ +

Σ
  (2.29) 
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where Σ  is the set of the violated constraints numbers, ( ) ( ){ }  s k s ks  ψ X ; Xε φ ε= > >Σ
 

; 

Stop criterion 2: when the projection of the objective function gradient in the current approximation kX


 
onto the active constraints surface is close to zero (objective function gradient is perpendicular to the active 
constraints surface) indicating impossible further improvement of the objective function value, as well as there 
are no violated constraints: 

;
;pε ε

= ∅
− ≥ ≥ +

Σ


 (2.30) 

Stop criterion 3: when in the current approximation kX


 of the iterative searching procedure Eq. (2.3) 

the total number of the active constraints t  equals to the number of design variables XN , as well as all active 
constraints are ε -active (both not violated constraints and those ones for whose inequality Eq. (2.13) met):  

;
;

0, .
X

f f

t N
fµ ξ µ⊥

 = ∅

=

 − × < ∀ ∈

Σ

L


 (2.31) 

This stop criterion for the iteration process Eq. (2.1) corresponds to the case when the current 

approximation ( ) , 1,
Tk

k XX X Nι ι


= = , to the optimum solution is located at the intersection of the 

constraints (i.e., vertex). In this case, no correction of the constraints violations is needed and further 
improvement of the objective function value is not possible. 

Stop criterion 4: when the objective function values within two consecutive iterations are the same with 
acceptable accuracy subject to the absence of the violated constraints: 

( ) ( )1

;

.k kf X f X−

= ∅


≈

Σ
   (2.32) 

3. Results and Discussion 
In order to estimate an efficiency of the new methods or algorithms, a comparison with alternative 

methods or algorithms presented by other authors using different optimization techniques should be 
performed. Criteria to implement such comparison are described, e.g. by Haug & Arora [15] and Crowder et 
al. [21]. Many of these criteria, such as robustness, amount of functions calculations, requirements to the 
computer memory, numbers of iterations etc. cannot be used due to lack of corresponded information in the 
technical literature. Therefore, an efficiency estimation of the method of objective function gradient projection 
onto the active constraints surface with simultaneous correction of the constraints violations presented above 
will be based on the comparison of the optimization results obtained using proposed improvement of the 
gradient projection method, as well as of the results presented by the literature and widely used for testing. 
The initial data and mathematical models of the parametric optimization problems considered below were 
assumed as the same as described in the literature. 

3.1. Parametric optimization of a three-bar truss 
Optimization of a three-bar truss (see Fig. 3.1) has been firstly solved by Schmit [22] using a non-linear 

programming method. Besides, the task has been also considered by Haug and Arora [15]. The parametric 
optimization problem is formulated as searching for optimum cross-sectional areas 1b , 2b  and 3b  of the truss 
bars providing the least value of the truss weight subject to normal stresses and flexural stability constraints, 
as well as displacements and eigenvalue constraints. The load cases for the considered truss are presented 
in Table 3.1. Initial data for optimization of the truss are shown in Table 3.2.  
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Table 3.1. Load cases for considered truss. 

Load case j  1 2 3 

jθ , ° 45 90 135 

jP 310×  [pound-force] 40 30 20 

jP  [kN] 177.9897 133.4922 88.9948 
 

 
Figure 3.1. Three-bar truss. 

Table 3.2. Initial data for optimization of the truss. 
Unit weight of the truss material gρ  0.1 pound/inch3 = 0.027154 N/cm3 

Modulus of elasticity E  107 pound/inch2=6.8971×106 N/cm2 

Allowable stresses value 1 3,a aσ σ  for the 1st and 3rd truss members 5000 pound-force/inch2=3.4486 kN/cm2 

Allowable stresses value 2
aσ  for the 2nd truss member 2000 pound-force/inch2=1.3794 kN/cm2 

Non-dimensional factor β  used to calculate second moment area of 

inertia for each truss member, i iI bβ=  
1.0 

Ultimate vertical az  and horizontal ax  displacements of the truss nodes 0.005 inch=0.0127 cm 

Lower limit value for eigenvalue 0ζ = 1.872·108 

 
The objective function can be written as presented below: 

( )0 1 2 32 2 mingl b b bψ ρ= + + → ; (3.1) 

where 1b , 2b  and 3b  are cross-sectional areas of the truss bars; l  is the truss height, 25.4l = cm (see 
Fig. 3.1). Let us formulate strength constraints for each truss members for all load cases as follows:  

3( 1) 1 0
j

i
ai

i i

N
j b

ψ
σ− = − ≤+ ; (3.2) 

where j
iN  is the axial force for i th truss member subjected to j th load case, 1,3i = , 1,3j = . Besides, let 

include to the system of constraints the inequalities for the positive values of the design variables: 

9 0i ibψ + = − ≤ ; (3.3) 
Flexural buckling constraints for all truss members can be written using Hooke’s law as presented 

below: 

12 3( 1)i jψ + − + =
( )4 4

2

 
1 0

j j

i

x z l

bπ β

+
− − ≤ ; (3.4) 

where 4 4,   j jx z  are linear displacements for node 4 of the truss subjected to j th load case along the directions 
of 0x  and 0z  axes respectively. The constraints on the minimum values of the eigenvalues can be written 
analytically using calculation results of the eigenvalues stability problem for the considered truss: 

2 1 3
0

2
22 2

1 3 1 3

2 2

2 2  2 1
1 0

3 2 2

b bl
b

b b b bE
b b

ρ ζ
ψ

 +
+ 

 = − ≤
  + − + − +     

. 
(3.5) 

Let also formulate displacements constraints for 4th truss node in the plane 0x z : 
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4
22 1 0

j

j a
x
x

ψ + = − − ≤ ; (3.6) 

4
25 1 0

j

j a
x
x

ψ + = − ≤ ; (3.7) 

4
28 1 0

j

j a
z
z

ψ + = − − ≤ ; (3.8) 

4
31 1 0

j

j a
z
z

ψ + = − ≤ . (3.9) 

Starting from start values of the design variables (0 64.516,  32.258b =


, ) 32.258 T cm2 with truss 

weight 0 116.602G =  N, an optimum solution ( )* 57.4878,  12.4482,  27.4299 Tb =


cm2 with the optimum 

weight * 91.383G =  N has been obtained. The comparison of the optimization results for the considered 
three-bar truss obtained by Haug and Arora [15] and in this article is presented in Table 3.3. Good correlation 
of obtained optimization results with the results of the other authors confirms the validity of the optimum 
solutions calculated using the proposed improvement of the gradient projection method. 

The step-by-step characteristics of the iterative searching for optimum design of the three-bar truss are 
presented in Table 3.4. Eleven iterations have been performed. The iterative searching process for the 
optimum point was stopped due to the following stop criterion: increment of the design variables within two 
consecutive iterations was less than 0.0001, whereas there were no violated constraints. 

Table 3.3. Comparison of the optimization results for the three-bar truss. 

Source 
Start and optimum cross-section areas [cm2] for truss member 

Truss weight [N] 
1 2 3 

Start values by Haug  
and Arora [15] 64.516 32.258 32.258 116.602 

Optimum values  
by Haug and Arora [15] 59.2257 13.9355 24.8387 91.588 

Optimum values  
by this paper 57.4878 12.4482 27.4299 91.383 

*truss member’s numbers are indicated in Fig. 3.1 
 

Table 3.4. Step-by-step characteristics of the iterative searching for optimum design of  
the three-bar truss. 

Ite
ra

tio
n 

nu
m

be
r Current values of the design variables [cm2] Objective 

function value 
[kN] 

Numbers of the active 
constraints 

Maximum 
violation of the 

constraints 1b  2b  3b  

0 64.5160 32.2580 32.2580 0.1166 – – 
1 44.5160 22.2580 22.2580 0.0805 15 0.35835 
2 60.7847 12.2580 12.2580 0.0797 10, 15, 18, 22, 24, 33, 34 0.46276 
3 40.7847 14.8577 22.2580 0.0717 15, 18, 22, 26 0.42237 
4 55.5763 15.8613 21.5250 0.0861 15, 22 0.10076 
5 57.3934 13.0115 26.3367 0.0906 15, 22 0.01189 
6 57.5871 12.5536 27.2368 0.0914 15, 22 0.00027 
7 57.4967 12.4569 27.4140 0.0914 15, 22 9.67·10-6 
8 57.4885 12.4489 27.4288 0.0914 15, 22 7.55·10-8 
9 57.4878 12.4483 27.4299 0.0914 15, 22 1.43·10-9 

10 57.4878 12.4483 27.4299 0.0914 15, 22 8.74·10-11 
11 57.4878 12.4483 27.4299 0.0914 15, 22 6.55·10-12 

 

3.2. Optimization of a ten-bar cantilever truss 
A parametric optimization problem of a ten-bar cantilever truss (see Fig. 3.2) is widely used in the 

literature [15, 23, 24, 25] in order to compare different methods for solving optimization problems. The 
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parametric optimization problem is formulated as follows: to find unknown cross-sectional areas for each truss 

member ( ) , 1,10T
ib b i= =



, with weight minimization of the truss subjected to stresses constraints in all 
truss bars, node displacements constraints, as well as constraints on the minimal cross-section areas. A start 
value 0b = 1.0 inch2=6.4516 cm2 was used as a start approximation for variable cross-sections areas for all 
bars of the considered truss. 

The considered truss undergoes two load cases, as shown in Fig. 3.2 and presented in Table 3.5. Initial 
data for optimization of the truss are presented in Table 3.6. 

 
 

 
Figure 3.2. Ten-bar cantilever truss. 

Table 3.5. Load cases for ten-bar cantilever truss. 

Load case 
number 

Node 
number 

(Fig. 3.2) 

Point load 
along axis  
0z , × 310  

[pound-force] 

Point load along axis 
0z  [kN] 

1 2 -100.0 -444.82 
4 -100.0 -444.82 

2 

1 50.0 222.41 
2 -150.0 -667.23 
3 50.0 222.41 
4 -150.0 -667.23 

 

Table 3.6. Initial data for optimization of the ten-bar truss. 
Unit weight of the truss material gρ  0.1 pound/inch3=0.027143 N/cm3 

Modulus of elasticity E  107 pound/inch2=6.8948×106 N/cm2 

Non-dimensional factor β  used to calculate second moment area of 

inertia for each truss member, 2
i iI bβ=  

1.0 

Lower limit value Lb  for cross-sectional areas for all truss bars 0.10 inch2=0.64516 cm2 

Allowable stresses value for the all truss member aσ  25000 pound-force/inch2=17.236 kN/cm2 

Ultimate vertical az  displacements of the truss nodes ±2 inch= ± 5.08cm 
 

Variable cross-section areas for each truss member ( ) ,  1,  10T
ib b i= =



, were considered as design 
variables. The objective function can be written as presented below: 

( )( )0 1 2 3 4 5 6 7 8 9 10 2 mingl b b b b b b b b b bψ ρ= + + + + + + + + + → ; (3.10) 

where l  is the truss height, 914.4l = cm (see Fig. 3.2). Constraints on lower limit value for variable cross-
sectional areas for all truss bars are written as follows: 

1 0i
i L

i

b
b

ψ = − ≤ . (3.11) 

Stresses constraints can be formulated as presented below: 

10 1 0i
i a

i i

N
b

ψ
σ+ = − ≤ . (3.12) 

where iN  is the axial force in the i th truss member. Displacement constraints for the truss nodes are written 
as follows:  

20 1 0j
j a

z

z
ψ + = − − ≤ ; (3.13) 

24 1 0j
j a

z

z
ψ + = − ≤ ; (3.14) 

where ,   j jx z  are linear displacements of j th truss node, 1,4j = . 
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Starting from the initial truss design with start weight 0 1.867G =  kN, an optimal solution with the 

optimum weight of * 22.514G =  kN has been obtained for the truss subjected to the first load case. 

Additionally, starting from the initial truss design with the start weight of 0 1.867G =  kN, an optimal solution 

with the optimum weight of * 20.806G =  kN has been obtained for the truss subjected to the second load 
case. For both loaded cases, the iterative searching process for the optimum point was stopped due to the 
following stop criterion: the increment of the design variables within two consecutive iterations was less than 
0.0001, as well as there were no violated constraints. 

Table 3.7. Comparison of the optimization results for the ten-bar cantilever truss. 

Bar 
number, 

i  

Design 
variable 

Start values for 
design 

variables [cm2] 

Optimal cross-section area for i th truss member [cm2] 
for the first load case for the second load case 

Haug&Arora [15] This paper Haug&Arora [15] This paper 

1 1b  6.4516 193.7480 196.7185 152.0255 151.8842 

2 2b  6.4516 0.6452 0.6452 0.6452 0.6452 

3 3b  6.4516 150.1545 149.6227 163.0771 163.1232 

4 4b  6.4516 98.6192 98.1744 92.5353 92.7578 

5 5b  6.4516 0.6452 0.6452 0.6452 0.6452 

6 6b  6.4516 3.5903 3.5536 12.7084 12.7079 

7 7b  6.4516 48.1825 48.0919 80.0063 79.8721 

8 8b  6.4516 136.7610 135.7063 82.9031 82.7963 

9 9b  6.4516 139.4707 138.8988 130.8707 131.1797 

10 10b  6.4516 0.6452 0.6452 0.6452 0.6452 

Truss weight [kN] 1.867 22.523 22.511 20.808 20.807 
Number of active constraints 4 5 4 6 
Numbers of active constraints 2, 5, 10, 22 2, 5, 10, 15, 21 2, 10, 15, 22 2, 5, 10, 15, 16, 22 

Modulus of the maximum violation in 
the constraints 0.27·10-4 6.35·10-7 0.17·10-3 1.19·10-7 

 
Table 3.8. Comparison of the optimization results for the ten-bar cantilever truss. 

Source of information 
Optimum weight [kN] 

Load case 1 Load case 2 
Stresses constraints only All constraints Stresses constraints only All constraints 

This paper 
Haug & Arora [15] 
Schmit & Miura [25] 
Rizzi [24] 
Dobbs & Nelson [23] 

7.087 
7.089 
7.089 
7.089 
7.217 

22.511 
22.523 
22.591 
22.590 
22.605 

7.404 
7.411 
7.407 
7.407 

– 

20.807 
20.808 
20.811 
20.811 
22.514 

 
Table 3.7 presents comparison of the optimization results for considered ten-bar truss obtained by Haug 

and Arora [15] and in this article. Table 3.8 shows a comparison of the optimization results for the ten-bar 
cantilever truss obtained using the proposed improved method of objective function gradient projection onto 
the active constraints surface with simultaneous correction of the constraints violations with optimization 
results presented by the literature [15, 23, 24, 25].  

Good correlation of obtained optimization results with the results of the other authors confirms the 
validity of the optimum solutions calculated using proposed improvement of the gradient projection method. 
The efficiency of the proposed improvement of the gradient projection method has been also confirmed taking 
into account the number of iterations and absolute value of the maximum violation in the constraints. The 
deviations available in some presented results can be explained by using a numerical approach to the iterative 
searching with specified accuracy. 

3.3. Optimization of a 24-bar transmission tower 
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A parametric optimization problem for a transmission tower (see Fig. 3.3) has been considered by Haug 
and Arora [15]. The transmission tower is subjected to 2 load cases, as shown in Table 3.9. The initial data 
for optimization of the tower are presented in Table 3.10. Taking into account the symmetry of the structural 
form, the vector of the design variables has been reduced to 7 variable cross-section areas for 25 structural 
members of the considered tower (see Table 3.11). The parametric optimization problem is formulated as 

searching for optimum cross-sectional areas ( ) , 1,7T
iX X i= =



, of the tower structural members, whose 
provide the least weight of the tower subjected to stresses constraints, node displacements constraints, as 
well as constraints on the minimal cross-section areas. 

A start value 0A = 1.0 inch2=6.4516 cm2 was used as a start approximation for the variable cross-
sections areas for all members of the considered tower. The dimensions of the optimization problem comprised 
7 design variables and 129 constraints. 

Table 3.9. Load cases for the transmission tower. 

 
Figure 3.3. Design model of the transmission 

tower. 

Load case 
number 

Node 
number 

(Fig. 3.3) 

Point load along axis [kN] 

0x  0y  0z  

1 

1 2.2241 – – 
2 2.2241 – – 
3 4.4482 –22.241 44.4822 
4 – –22.241 44.4822 

2 
3 – –22.241 88.9644 
4 – –22.241 –88.9644 

The positive direction of the point loads coincides with the 
positive direction of the corresponded axes 

     
Table 3.10. Initial data for optimization of the transmission tower. 

Unit weight of the tower material gρ  0.1 pound/inch3=0.027154 N/cm3 
Modulus of elasticity E  107 pound/inch2=6.8971×106 N/cm2 

Non-dimensional factor β  used to calculate second moment area of 

inertia for each tower structural member 2
i iI bβ=  

1.0 

Lower limit value LA  for cross-sectional areas for all tower members 0.01 inch2=0.0645 cm2 

Ultimate node displacements of the tower , ,a a ax y z  0.35 inch=0.889 cm 

Allowable stresses value for the all tower member aσ  ± 40000 pound/inch2= ± 27.5885 kN/cm2 

 
Table 3.11. Comparison of the optimization results for the transmission tower. 

Design variable Tower structural 
members* 

Optimal cross-section areas for tower members [cm2] 
Haug and Arora [15] This paper 

1A  1 0.0645 0.0655 

2A  2, 3, 4, 5 13.2103 13.1754 

3A  6, 7, 8, 9 19.3322 19.3654 

4A  10, 11, 12, 13 0.0645 0.0645 

5A  14, 15, 16, 17 4.4213 4.4056 

6A  18, 19, 20, 21 10.4626 10.4669 

7A  22, 23, 24, 25 17.2335 17.2343 
Tower weight [kN] 2.4250 2.4245 

*bar’s numbers are indicated in Fig. 3.3 
 

At the continuum optimum point there were 5 active constraints: constraints on lower limit value for 
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variable cross-sectional area for 10th, 11th, 12th and 13th tower members; 3rd and 4th node displacement 
constraint of the tower along axis 0z  for both load cases. The iterative searching process for the optimum 
point was stopped due to the following stop criterion: increment of the design variables within two consecutive 

iterations was less than 61 10−× , as well as there were no violated constraints. 

The comparison of the optimization results for the transmission tower is presented by Table 3.11. Good 
correlation of obtained results with the results of the other authors confirms the validity of the optimum solutions 
calculated using the proposed improvement of the gradient projection method. Start values of the design 
variables have no influence on the optimum solutions for the considered non-linear problems, validating thus 
the accuracy of the obtained optimum solutions. The efficiency of the proposed improvement of the gradient 
projection method has been also confirmed taking into account the number of iterations and absolute value of 
the maximum violation in the constraints. 

4. Conclusion 
The paper considers parametric optimization problems for the bar structures formulated as nonlinear 

programming task. The method of the objective function gradient projection onto the active constraints surface 
with simultaneous correction of the constraints violations has been used to solve the parametric optimization 
problem. 

Equivalent Householder transformations of the resolving equations of the method have been proposed. 
They increase numerical efficiency of the algorithm developed based on the considered method. 

Equivalent transformations (Givens rotations) of the resolving equations of the method have been also 
proposed. They ensure acceleration of the iterative searching process in the specified cases described by the 
paper due to decreasing the amount of calculations. 

Lengths of the gradient vectors for objective function, as well as for constraints remain as they were in 
scope of the proposed equivalent transformations ensuring the reliability of the optimization algorithm. 

In order to estimate an efficiency of the proposed improvement of the gradient projection method, a 
comparison of the obtained optimization results with the results presented by the literature and widely used 
for testing has been performed. Good correlation of obtained results with the results of the other authors 
confirms the validity of the optimum solutions calculated using the proposed improvement of the gradient 
projection method. The efficiency of the proposed improvement of the gradient projection method has been 
also confirmed taking into account the number of iterations and absolute value of the maximum violation in the 
constraints. 
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