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Abstract. An algorithm for determining the optimal parameters of an elliptical road bridge made of concrete 
blocks is proposed. The arch section heights are determined from the condition that the height of the 
concrete compressed zone should not be less than half the section height at any position of the automobile 
load. To solve the problem by the finite element method in physically nonlinear formulation, the principle of 
possible stress states is used. The nodes equilibrium equations of the arch are compiled using the possible 
displacements principle. The arch internal forces by a finite element length are approximated with linear 
functions, the concrete deformation diagram is represented in a piecewise-broken curve. Also, to determine 
the bearing capacity reserve of the optimal arch, the arch calculations were performed with a gradual 
increase in the automobile load up to destruction. Three options for the vehicle load location were 
considered. The optimal parameters of an arched road bridge with a span of 12 meters and its bearing 
capacity have been determined. It is shown that the arch destruction occurs with an increase in the load 
from the car by about 1.6 times. 
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1. Introduction 
Arched concrete and reinforced concrete structures with soil backfill are widely used for bridge 

crossings and overpasses. Such constructs are easy to manufacture and economical. The article [1] 
proposes an analytical method for determining the internal forces of arched lintels. Elastoplastic work of 
the arch material is considered. Three differential equations of equilibrium are solved analytically, and an 
example of calculating an arch for a concentrated force action is given. In [2], a model of cracking and 
plastic deformation of reinforced concrete arches is considered. The solution was obtained based on the 
additional energy functional and the generalized criterion for the propagation of the Griffith’s crack. 
Comparison of numerical solutions with an experimental data is carried out. In articles [3], [4] numerical 
and experimental studies of brick arches are given. In [3], an arch is represented by a rigid blocks system 
connected by three links. The study used combinatorial analysis to determine the hinges position at small 
supports displacements. The article [5] investigates the mechanisms of a stone vaults destruction under 
the concentrated forces action. There is noted the importance of considering the of occurrence 
displacements possibility between rigid blocks. 

Several articles are devoted to the optimization of the arches shape [6, 7]. The article [6] optimizes 
the shape of an underground concrete arch to reduce bending stresses. The arch is calculated using a 
nonlinear finite element model. The arch center line approximated by the Bezier curve with three freedom 
degrees. The optimal parameters are determined using a genetic algorithm. The mechanisms of stone 
arches destruction and concrete blocks arches are very similar. The articles [8–11] are devoted to the 
masonry arched bridges. The article [12] provides an overview of studies on the methods of reinforcing 
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brick arches with composite materials. In particular, the use of fiber cement matrix (FRCM) materials for 
reinforcing brick arches is investigated in [13]. The article presents numerical and experimental studies of 
arches reinforced with such materials. Arches are modeled using a set of rigid blocks. In a few works, 
volumetric finite elements are used for calculating stone and concrete structures [11, 14, 15]. In [11], the 
application of the combined finite discrete element method (FDEM) for the analysis of three-dimensional 
stone structures from dry stone is presented. The article [16] presents the results of experimental and 
numerical studies of the response of a multi-span arched masonry bridge by vertical static loads. In [17], a 
two-phase strategy for the numerical simulation of the stone destruction process of arched bridges is 
presented. The stone blocks are represented by solid elements, and the solution is described by special 
finite elements. Three modes of destruction (compression, tension, shear) of masonry materials are 
considered. Article [18] is devoted to the numerical analysis of masonry, based on experimental data. When 
calculating arched bridges, it is important to consider shear deformations. The theory of shear deformations 
accounting of the circular arches was proposed in [20]. This article presents an analytical solution for 
calculating circular arches, based on the use of logarithmic functions. Consideration of shear deformations 
based on stress approximations is presented in [19, 20]. In [21], an algorithm for determining the optimal 
dimensions of swept arches from concrete blocks is presented. To solve a physically nonlinear problem, 
the functional of additional energy is used in combination with the possible displacement principle [22, 23]. 
Internal forces along the length of a finite element are approximated by piecewise constant functions. The 
discrete element method has been successfully used to calculate stone arches considering nonlinearity 
[24-27]. Considerable attention is paid to considering the influence of such factors as rain, displacement of 
supports, shock loads on the strength and stability of arched structures [28–30]. 

The purpose of this work is to build an algorithm for finding the optimal dimensions of an arched 
elliptical bridge made of concrete blocks. With a given bridge span and a given minimum section height, it 
is required to determine the arch height and the section height change along the arch length, ensuring the 
minimum arch weight under the design loads action.  

The solution of a physically nonlinear problem is based on the principles of possible stress states 
and possible displacements. Internal forces are approximated by linear functions, a concrete deformation 
diagram is represented in a piecewise-broken curve. 

2. Methods 
The arch concrete blocks are deformed together, and the nodes remain rigid, due to the joints 

compression by the longitudinal forces that arise in the arch systems, and due to the friction forces, that act 
at the junction between the blocks (Fig. 1). The absence of shear translation between the blocks is ensured 
by the friction forces of concrete against concrete in the compressed zone. Therefore, the required arch 
section height will be determined from the condition of concrete strength, as well as from the condition of 
ensuring the compressed zone height is not less than half of the section. In calculation process, the section 
shear strength will be tested against the transverse force action that occurs in the section (30). Therefore, 
in the finite element scheme, the nodes are assumed to be rigid. 
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Figure 1. Loads acting on the arch. 



Magazine of Civil Engineering, 117(1), 2023 

 

The arch is divided lengthwise into finite elements. Bending moments and longitudinal forces are 
approximated along the length of each finite element by linear functions independently (Fig. 2). In Fig. 2 
the unknowns numbering for the first two finite elements are shown. Due to the node equilibrium equations, 
under the action of a possible displacement in a rotation angle form, the equality of the moments in the 
nodes will be ensured. 

The concrete stress-strain diagram of the arch is presented in the piecewise-broken curve form, 
which does not consider the tensile concrete stresses (Fig. 3). Such a diagram is used because tensile 
stresses cannot arise in the concrete blocks joints sections. In the sections between the joints, for the safety 
margin, the tensile concrete stresses will also be neglected. With this approach, the arch calculation will 
not depend on the length of the concrete blocks and the number of joints. 

                        
Figure 2. Numbering of the unknown nodal forces. Figure 3. Diagram of a concrete deformation. 

To solve the problem with a physically nonlinear formulation, we will use the possible stress states 
principle. For an arbitrary step of an increasing load, variation of the additional deformation energy 
increment ( )δ i∆Π  is zero (1). 

( ) ( )( ) ( )δ δ δ dV 0.i i i i
V
ε ε σ∆Π = + ∆ ∆ =∫    (1) 

iε , iε∆  are the current deformations and deformations increments at a loading step i; iσ∆  is the 
stresses increments, which must satisfy the equilibrium equations at loading step i; V is subject area. The 
deformations and stresses increment at each step are interconnected by the deformation tangent modulus

( )t
i iE ε : 

( ) .t
i i i iEσ ε ε∆ = ∆      (2) 

Substituting (2) into (1), we get: 

( ) ( ) ( )( ) ( )δ δ δ dV 0.t
i i i i i i

v
E ε ε ε ε∆Π = + ∆ ∆ =∫    (3) 

From expression (3) it follows that the additional strain energy increment will have the following form: 

( ) ( ) 21 dV.
2

t t
i i i i i i i i

v
E Eε ε ε ε ε ∆Π = ∆ + ∆ 

 
∫     (4) 

Let us calculate the additional energy deformations increment of a rod finite element. The strains 
increments are determined according to the straight normal hypothesis: 

0 .i i izε ε χ∆ = ∆ − ∆      (5) 

0iε∆  is the increment of midline deformation; iχ∆  is axis curvature increment. Substituting (5) into 
(4), we get: 
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( ) ( )( )
/2 /2

2 2
, 0 0 0

0 /2 0 /2

1d d 2 d d .
2

k kl lh h
t

i k i i i i i i i i i
h h

b z z x bE z z xε χ σ ε ε ε χ χ
− −

∆Π = − ∆ + ∆ − ∆ ∆ + ∆∫ ∫ ∫ ∫ (6) 

Let us introduce notation for the following integrals: 

( ) ( ) ( )
/2 /2 /2

2

/2 /2 /2
d , zd , d .

h h h
t t t t t t

i i i i i i
h h h

EA bE z ES bE z EI bE z zε ε ε
− − −

= = =∫ ∫ ∫    (7) 

Integrals (7) are calculated numerically using the concrete stress-strain diagram (Fig. 3) by the 
trapezia method. Considering (7), the internal forces increment in the section are determined by the 
following formulas: 

( )( )
/2 /2

0 0
/2 /2

d d ,
h h

t t t
i i i i i i i ii

h h
N b z bE z z EA ESσ ε ε χ ε χ

− −
∆ = ∆ = ∆ − ∆ = ∆ −∆∫ ∫   (8) 

( )( )
/2 /2

2
0 0

/2 /2
d d .

h h
t t t

i i i i i i i ii
h h

M b z z bE z z z ES EIσ ε ε χ ε χ
− −

∆ = − ∆ = − ∆ − ∆ = −∆ + ∆∫ ∫  (9) 

From expressions (8), (9) we obtain 

0 2 2, .
t t t t

i i i i
i it t t t t t

N EI M ES N ES M EA
EA EI ES EA EI ES

ε χ
∆ + ∆ ∆ + ∆

∆ = ∆ =
− −

  (10) 

Substituting (10) into (6), we get 

( )
2 2

,k 0 22 2
0 0

21d d .
2

k kl l t t t
i i i i

i i i i i t t t t t t t t t
EI N EA M ES M NN M x x

EI EA ES EI EA ES EI EA ES
ε χ

 ∆ ∆ ∆ ∆
∆Π = ∆ + ∆ + + +  − − − 

∫ ∫  (11) 

Let us introduce the vectors of unknown nodal forces and its increments for a finite element k: 

,2 1 ,2 1

,2 1 ,2 1
, ,

,2 ,2

,2 ,2

, Δ .

i k i k

i k i k
i k i k

i k i k

i k i k

N N
M M
N N
M M

− −

− −

∆   
   ∆   = =   ∆   
   ∆   

S S      (12) 

To approximate the forces and moments along the finite element length, we will use linear functions. 
The approximations are independent for each finite element. In this case, the global flexibility matrix has a 
block-diagonal shape and be easily reversible. The expression (11) can be written in matrix form: 

T T
,k , , , ,k ,

1 Δ Δ Δ ,
2

t
i i k i k i k i i k∆Π = +S D S Δ S        (13) 

The second integral in (11), which determines the tangent matrix elements, is calculated numerically 
using the trapezia formula. Divide the finite element into n equal segments  /k kl l n∆ = . Let us denote the 
shear stiffness generalized parameters of the section at an arbitrary point j of a finite element k: 

( ) ( ) ( )
/2 /2 /2

2
, , , , , , , , ,

/2 /2 /2

2
, , , ,

d , zd , d ,

.

j j j

j j j

h h h
t t t t t t
k j j k i k j k j j k i k j k j j k i k j

h h h

t t t t
k j k j k j k j

EA b E z ES b E z EI b E z z

ER EI EA ES

ε ε ε
− − −

= = =

= −

∫ ∫ ∫
(14) 

,j jb h  are the section dimensions at point j. ( ),k j zε  is the deformation at point j: 

( ) ( ), ,2 1 ,2 1 ,2 ,2 .k j j
k j i k i k i k i k

k k

l x x
z z

l l
ε ε χ ε χ− −

−   
= − + −   

   
   (15) 
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,2 1i kε − , ,2 1i kχ − , ,2i kε , ,2i kχ  are deformations and curvatures of axis at the beginning and end a 

finite element k; jx  is a local coordinate of point j. Let us introduce the tangent matrix ,
t
i kD  elements 

notation: 
2 2

, , ,
,1 ,1

1,1 1,2 1,3
2 2 2, ,1 , ,1 ,

, ,

1,4 2,2
2 ,

1 1 1
, , ,

2 2

1 1
,

j j j jt t t
k j k j k jt tn n nk kk k k k

t t t t t
j j jk j k k j k k j

j j jt t
k j k jn k k k

t
j k j

x x x x
EI ES EI

EI ESl l l l
d d d

ER ER ER ER ER

x x x
ES EA

l l l
d d

ER

= = =

=

     
− − −     

     = + = + =

   
− −  

   = =

∑ ∑ ∑

∑

2

,
,1

2,3 1,4 2,4
2 2, ,1 ,

2 2

, , ,
, 1 , 1

3,3 3,4 4,4
2 2, , 1 , , 1

1
, , ,

2

, ,
2 2

j jt
k jtn nk k k

t t t
j jk j k k j

j j jt t t
k j k j k jt tn nk n k nk k k

t t t t
j jk j k n k j k n

x x
EA

EA l l
d d d

ER ER ER

x x x
EI ES EA

EI ESl l l
d d d

ER ER ER ER

= =

+ +

= =+ +

 
−  

 + = =

     
    
    = + = + =

∑ ∑

∑ ∑

2

, 1

2 , , 1
.

2

tn k n
t t

j k j k n

EA

ER ER
+

= +


 +∑

(16) 

The final matrix ,
t
i kD  expression is as follows: 

1,1 1,2 1,3 1,4

1,2 2,2 2,3 2,4
,

1,3 2,3 3,3 3,4

1,4 2,4 3,4 4,4

.t
i k k

d d d d
d d d d

l
d d d d
d d d d

 
 
 = ∆
 
 
  

D      (17) 

From the matrices ,
t
i kD  of finite elements we form the global matrix: 

,1

,2

,

.

t
i

t
t i
i

t
i n

 
 
 

=  
 
 
 

D

D
D

D



     (18) 

Consider the linear nature of the change in forces and moments along the finite element, we obtain 

the expression for the vector ,kiΔ : 

,2 1 ,2

,2 1 ,2

,
,2 1 ,2

,2 1 ,2

3 6

3 6 .

6 3

6 3

i k i k

i k i k

i k k
i k i k

i k i k

l

ε ε

χ χ

ε ε

χ χ

−

−

−

−

 
+ 

 
 

+  =  
 + 
 
 +  

Δ      (19) 

Then, for the whole system, we obtain the following expression for the increment of additional energy 
of the deformations: 

T T1 Δ Δ Δ .
2

t
i i i i i i∆Π = +S D S Δ S         (20) 

In accordance with the possible stress states principle, the forces and moments increments must 
satisfy the equilibrium equations. Such equations for nodes can be obtained using the possible 



Magazine of Civil Engineering, 117(1), 2023 

 

displacements principle [23]. The vertical, horizontal displacements and angles rotations of nodes are taken 
as possible displacements. As a result, we obtain equations for the equilibrium of forces and moments for 
each unsecured arch node. For the whole system, the equilibrium equations can be written in the following 
matrix form: 

Δ 0.i i+ ∆ =L S P       (21) 

The equilibrium global matrix L  is formed from equilibrium matrices kL  of finite elements. 

2 2 1 2 2 1

cos sin cos sin
2 2

sin cos sin cos
2 2 2 2
0 1 0 0

, cos , sin .cos sin cos sin
2 2

sin cos sin cos
2 2
0 0 0 1

k k k k

k k

k k k k

k k k k
k k k

k k k k k k

k k

k k k k

k k

l l

x x y y
l l

l l

l l

α α α α

α α α α

α αα α α α

α α α α

− −

− − − 
 
 
 − − −
 
 
  − −

= = = − 
 
 − 
 
 − 

L (22) 

Note that the matrix L  is geometric and does not depend on a load. The load vector i∆P  is formed 
from the forces concentrated in the nodes and the loads distributed over the finite element. For that we 
must calculate the load work at possible displacements of the nodes.  

Using the Lagrange multiplier method, we add the nodes equilibrium equations (21) with the 
functional (20). We get the following advanced functional: 

( )T T T1 Δ Δ Δ Δ .
2

t
i i i i i i i i i∆Π = + + + ∆S D S Δ S w L S P    (23) 

The Lagrange multipliers vector consists of nodal displacements and rotation angles values: 

( )T
1 1 1 2 2 2 .i n n nu w u w u wϕ ϕ ϕ=w      (24) 

Equating the functional derivatives with respect to vectors TΔ iS  and T
iw , we obtain the linear 

algebraic equations system: 

TΔ 0,
Δ 0.

t
i i i i

i i

+ + =
+ ∆ =

D S Δ L w
L S P

     (25) 

Let us express from the first equation the forces increment vector 

1 1 TΔ .t t
i i i i i

− −= − −S D Δ D L w     (26) 

The matrix t
iD  is block-diagonal and easily inverted. Let us introduce notation of the matrix product: 

                                   
1 T.t

i i
−

=K LD L        (27) 

From the second equation (25) we obtain the resolving system of nonlinear algebraic equations 

1 .t
i i i i i

−= ∆ −K w P LD Δ      (28) 

For solving (28), we will perform iterative refinement according to the Newton - Raphson scheme. 
We will use the following calculation algorithm with given automobile position: 

1. Calculate matrix L  and vector P ; 0 0=S ; for each node k: 0, 0kε = , 0, 0kχ = . 
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2. Accept 1∆ =P P , i=0.  
3. Begin cycle of iterative refinement; accept 1i i= + . 

4. Calculate matrices t
iD , 

1t
i
−D , , iK Δ . 

5. Calculating equations system (28), we get iw . 

6. Using (26), we calculate Δ iS . 

7. Using (10), we calculate for all nodes: , ,ε ,i k i kγ∆ ∆ ; 

8. Calculate for all nodes , 1, , , 1, ,,i k i k i k i k i k i kε ε ε χ χ χ− −= + ∆ = + ∆ . 

9. Using in (8) and (9) the secant modulus of deformations we calculate iS . 

10. Calculate 1Δ i i i−= −S S S . 

11. Calculate Δi i∆ =P L S  and accuracy ( )
( )2, ,

1

2
,

1

100

d

d

n

i j i j
j

i n

i j
j

P P

Ex

P

=

=

− ∆

∆ =
∑

∑
P . 

12. If ( ) [ ]iEx Ex∆ >P , then we calculate Δi i i∆ = −P P L S ; i i=S S  and go to 3.  

13. If ( ) [ ]iEx Ex∆ ≤P , then we have end of iterative refinement. 
 

The resulting bending moments are used to calculate the shear forces in finite elements: 

2 2 1 .k k
k

k

M MQ
l

−−
=       (29) 

Next, a check is carried out for a possible displacement of the sections at the joints of concrete 
blocks: 

2 1 2, .k fr k k fr kQ k N Q k N−≤ ≤     (30) 

frk  is the friction coefficient of concrete on concrete; 2 1 2 1 2 2, , ,k k k kN M N M− −  are the internal 

forces at the finite element beginning and end. If conditions (30) are not done, then a shift of concrete 
blocks relative to each other is possible and it is necessary to change a design scheme. 

At each node of the arch, the eccentricity modulus of the longitudinal force and the required section 
height are calculated, which provides the compressed zone will be equal to half the section height (with a 
linear stress diagram in the compressed zone): 

, 3 .si
i i i

i

Me h e
N

= = ⋅      (31) 

Calculations have shown that the maximum compressive stresses are far from the limiting value; 
therefore, the stress diagram in the compressed zone is practically linear. Nonlinearity of deformations is 
associated with the exclusion of the stretched concrete zone from the work. 

The required heights of the arch cross sections will be determined using the following iterative 
algorithm: 

1. For each arch node i, we set the initial value of the section height minih h= . 

2. Begin cycle of ih  finding. 

3. Set iter
i ih h= . 
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4. Begin cycle on px  (Fig.1) from 0 to 
2 2

xaL − 
 

 with step 0.1 m. 

5. We perform the arch calculation according to the algorithm given above. 

6. For each arch node, we calculate s
ih  (31). 

7. If s iter
i ih h> , then iter s

i ih h= . 

8. End cycle on px . 

9. For each arch node i, we calculate min
10000

10000

iter
i i

i
h hh h

 ⋅ +
= ≥  
 

. 

10. Rounding ih  to 5 cm. 

11. Go to 3. 

The calculations have shown that the process of refining the cross-section heights converges in no 
more than 15 iterations. As a result of the calculation, for each node, the maximum eccentricities of the 
longitudinal force and the required section height are determined. These heights will ensure the 
compressed zone value at least half of the cross section at any automobile load position. 

3. Results and Discussion 
Consider the problem of determining the optimal parameters of an elliptical arch bridge. The arch is 

subject to loads from the weight of the backfill soil and a load from the moving vehicle (Fig. 1). In this case, 
the compressed zone minimum height should be at least half the arch section height. When searching for 
the optimal parameters, we will assume that the arch span L is given, and the optimal arch height H must 
be selected. The optimal height is determined by sequential calculation of the arches with it gradual 
increasing. The all data for the calculation are given in Table 1. The arch was divided along the length into 
16 finite elements. 

Table 1. Arch calculation data. 
Denotation Dimension Value Parameter 

0h  m 2.0 Backfill height from the arch top 

grϕ  degree 35 Angle of internal soil friction 

grγ  kN/m3 17.7 Soil volume weight 

a  m 1.2 Distance between vehicle axles 

aP  kN 250 Vehicle axle load 

xa  m 3.6 Load length from vehicle 

ya  m 2.7 Load width from vehicle 

L  m 12 Arch span 

B m 0.5 Arch width is a bridge strip width on 
which the load is collected 

minh  m Need to assign The minimum height of the arch cross 
section 

Н m Need to define Arch height 
 

Vertical and horizontal loads from the vehicle and the ground (Fig. 1) are determined by the following 
formulas:  
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( )( ) ( ), 0
0 0

1.2 , 1.1 .a
a gz i gr i

x y

B Pq q H h z B
h a h a

γ
⋅ ⋅

= = ⋅ + − ⋅
+ +

   (32) 

( )2 2
, 0 , 01.1 45 , 1.1 45 .

2 2
gr gr

qx up gr qx dn grq h tg B q H h tg B
ϕ ϕ

γ γ
   

= ⋅ ⋅ − = ⋅ + ⋅ −   
   

 (33) 

To these loads is added the load from the arch own weight.  

The parameters of the compressed concrete deformation diagram were taken as follows:
2

1 0 20.000314, 0.002, 0.0035, 17000 /b b b bR kN mε ε ε= − = − = − =  (Fig. 2). 

Fig. 4 shows the most optimal arch minimum weight ( min 0.4h m= ). 

  

 
Figure 4. Arch with minimum weight of 15.409 tons: on the left side the blocks section heights are 

indicated; on the right side the maximum eccentricities of the longitudinal force (in meters) are 
indicated. 

The arch division into finite elements was carried out automatically. Arch nodes were defined as the 
point of intersection of a straight line drawn from the span middle and an elliptical arc. Straight lines were 
drawn with an angular step of 11.25 degrees. The angles were measured from the horizontal line. The first 
five finite elements of half–arch have a minimum cross-section height. Further, an increase of the section 
height is required to 0.6–0.7 meters. 

Table 2. Arch weight (tons) depending on geometric parameters. 

[m]H  
min [m]h  

0.4 0.5 0.6 
8.8 - 17.471 18.534 
8.9 15.498 16.690 18.668 
9.0 15.409 16.816 18.802 
9.1 15.761 17.175 18.936 
9.2 16.001 17.536 19.308 

 

Table 2 shows optimal weights of arches, depending on an arch height and a specified minimum 
section height. Note that the arch optimal weight is more influenced by a value of minimum section height, 
which is specified. Setting a minimum arch height is necessary to meet possible construction requirements. 
Also note that the greater a minimum section height, the lower an optimal arch height. 
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Figure 5. The arch top displacements depending on the Vehicle axle load value. Blue line – the 

load is located symmetrically from the center; gray line – the load is displaced on1.2 meters from 
the center; red line – the load is displaced on 2.4 meters from the center. 

Also, to determine the bearing capacity reserve of the optimal arch, the arch calculations were 
performed with a gradual increase in the automobile load up to destruction. Three options for the vehicle 
load location were considered (Fig. 5). The most dangerous is the load location with an offset of 2.4 meters 
from the top of the arch (red line in Fig. 5). In this case, the ultimate automobile load is approximately 1.6 
times higher than the calculated one. This value shows the safety margin of the arch. The danger of an 
asymmetrical arrangement of the load for arches made of stone blocks is also noted in [1, 4]. If the vehicle 
load is located symmetrically with respect to the arch top, then the breaking load value is twice the 
calculated one. If it is necessary to provide a greater safety margin for the arch, then we must take the 
minimum height of the compressed zone more than half the section height. The arch, which is optimal in 
terms of weight, has a cross section that is variable in length, so concrete blocks must be manufactured 
individually. Also, the blocks must have the required slope of the faces to ensure the compressive forces 
transmission. For the manufacture of such blocks, it is necessary to have a steel mold with three moving 
faces, which is quite technically feasible and will not lead to a significant blocks cost increase. At the same 
time, by reducing the concrete arche volume, the building materials cost is can reduced significant. If 
necessary, you can determine the arch optimal height with a constant section size, but such an arch will 
not have a minimum weight. For example, the arch in Fig. 4 with the constant maximum required section 
height of 0.7 meters will have a weight of approximately 22 tons, which is 1.5 times more than the optimal 
one. 

4. Conclusions 
1. An algorithm for determining the optimal parameters of an elliptical arched road bridge made of 

concrete blocks is proposed. With a given bridge span and a given minimum section height, the arch height 
and the section height change along the length are determined, providing the minimum arch weight under 
the design loads action. 

2. The solution of a physically nonlinear problem is based on the principles of possible stress states 
and possible displacements. Internal forces are approximated by linear functions, the concrete deformation 
diagram is represented as a piecewise broken curve. 

3. The optimal parameters of an arched road bridge with a span of 12 meters and its bearing capacity 
have been determined. It is shown that the arch destruction occurs with an increase in the automobile load 
by about 1.6 times, what shows the safety margin of the arch. This arch with the constant maximum required 
section height of 0.7 meters will have a weight of approximately 22 tons, which is 1.5 times more than the 
optimal one. 
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