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Abstract. The effectiveness of piles with reverse surface slope in frost heaving of soil has been the subject 
of discussion in many papers. In the previous works, the author considered cylindrical piles with an upper 
reverse taper and calculation method for the piles under these conditions. However, in order to extend the 
area of their use it is necessary to consider other configurations of piles as well. In this study, prismatic face 
slope piles are modeled for soil frost heaving conditions; equilibrium equations for calculating prismatic 
piles with four, six and eight faces are derived. The equilibrium equation for prismatic face slope piles in 
general form is also given. The equations make it possible to determine geometric parameters of piles 
ensuring their stability in soil under the action of tangential frost heaving forces. The author analyzes 
material capacity of cylindrical taper piles and prismatic face slope piles. The piles have the same bearing 
capacity in thawed soil and operate under the same geological and climatic conditions set before. The 
square pile with a sloping face shows the lowest material capacity. The proposed approach can be used 
for prismatic piles with a different number of faces in various conditions. 
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1. Introduction 
The effectiveness of a pile under frost heaving is characterized by its stability, which can be achieved 

through the equilibrium of the acting forces. This equilibrium prevents the pile from being lifted by frost 
heaving forces, which contributes to the integrity of the structure above. The pile uplift can be avoided in 
various ways. The first way is to increase the load on the pile by changing the weight of the structures 
above. However, this might lead to unjustified cost increases. Another way is to use piles that reduce the 
impact of frost heaving forces on the structures. The design of such piles involves creation of surface slope 
resulting in additional restraining forces. The latter counteract the frost forces that cause the piles to rise. 

The surface slope for a cylindrical pile can be created by means of a truncated taper at the top of the 
pile. The bottom base of the taper corresponds to the diameter of the pile, which creates the surface slope 
where forces are formed to counteract the frost heaving. The author of the paper [1] has developed a pile 
with an upper reverse taper. 

If the pile is prismatic and has a square cross-section, the necessary counter-bulging forces can be 
obtained by shaping the upper section of the pile into a pyramid, with the upper square base being smaller. 
This makes it possible to create a slope on the side faces of the pile resulting in counter-bulging forces. 
Prismatic piles can have a cross-section with a different number of faces. 

The effectiveness of surface slope piles has been verified by numerous experimental studies and 
practical use. V.F. Zhukov [2] described the practice of using piles with an expanded base in harsh climatic 
conditions of Magadan. K.A. Linell and E.F. Lobacz [3] reviewed the practice of applying foundations in 
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frozen soil. They gave recommendations on designing trapezoidal foundations with expansion in the lower 
part and on pile foundations with a developed base in the form of an anchor plate. P.A. Abbasov and 
A.A. Kovalevskii [4] developed piles with ribbed surfaces, which they recommended to use in frost heaving 
soil conditions. F.G. Gabibov [5] confirmed the effectiveness of such piles in soils increasing in volume.  
O.P. Medvedeva, I.N. Kazakov and N.F. Bulankin [6] analyzed the performance of pyramidal-prismatic piles 
in conditions of Siberian climate. The prismatic part of the pile made it possible to use such piles in 
conditions of freezing and frost heaving. B.S. Yushkov and his colleagues [7–8] conducted research into 
the performance of the double taper pile (‘double cone pile’) in seasonally freezing soils. They proved the 
effectiveness of such a pile under soil frost heaving due to the upper reverse taper. S.V. Feshchenko, 
A.V. Veshkurtsev, G.B. Barskaya [9] proposed to increase the cross-section of the lower part of the pile in 
order to anchor it in permafrost. L. Domaschu k[10–11] studied foundations with expanded bases and their 
performance in heaving soils. In his paper [10] he considered a tower foundation consisting of inclined 
elements forming a truncated pyramid. The test results indicated that the influence of frost heaving on the 
inclined elements decreased as the angle of inclination increased. X. Huang, Y. Sheng and others [12–13] 
tested bell-shaped piles in freezing soil. They found increased resistance of such piles to lifting caused by 
tangential forces of frost heaving.  M. Schafer and S.P. Madabhushi [14] conducted experimental studies 
of small pile models with an expanded base in soils increasing in volume. The results showed that the 
expanded base increased the resistance of piles to uplift, which is efficient under frost heaving. Z. Zhu, 
L. Han [15] proposed a taper-cylindrical foundation for a tower in frozen soil. D.C. Sego, K.W. Biggar and 
G. Wong [16] extended traditionally used investigation methods for straight piles to bell-shaped piles under 
permafrost. They pointed out that the bearing capacity of a pile in permafrost can be increased by base 
expansion. Thus, experimental studies reliably confirm the effectiveness of surface slope piles under frost 
heaving conditions. 

However, practical design of such piles requires calculation methods taking into account frost 
heaving forces and other factors. The latter include climatic and hydrogeological conditions and also the 
thermal regime of the soil. The existing calculation regulations are based on the theory of elasticity and 
Fourier laws related to thermal conductivity of frozen soil. Calculation models of soil frost heaving have 
been developed by Russian and foreign authors. V.M. Ulitsky, I.I. Sakharov, V.N. Paramonov and S.A. 
Kudryavtsev [17–18] published a series of papers where they proposed a mathematical model to determine 
the thermal characteristics and stress-strain state of freezing soil. S. Nishimura and others [19] presented 
a thermo-hydro-mechanical formulation for frost heaving suitable for assessment of foundation stability. 
J.H. Dong, X.L. Wu and others [20] developed a computational model of horizontal frost heaving. 
A.G. Alekseev [21] compared the simulation results obtained by means of various software tools with the 
analytical solution of the soil frost heaving problem. Based on their work, the author of the paper [22] has 
developed a method for calculating normal frost heaving forces. However, calculation of piles of complex 
configurations, including surface slope piles, under frost heaving requires consideration of additional 
factors. 

Many scientists have worked on calculation methods for piles with reverse surface slope and other 
configurations. Among them are A.Z. Ter-Martirosyan and Z.G. Ter-Martirosyan [23], who used analytical 
and numerical methods to calculate interaction of a pile with an enlarged base with the surrounding soil. 
They obtained the dependence of stress-strain state of soil on pile geometric parameters. Their approach 
can be applied to evaluate pile operation both in thawed and in frozen soil. V.S. Sazhin [24] analyzed frost 
heaving forces and deformations for shallow foundations. He investigated foundations of trapezoidal 
section and truncated pyramid-shaped blocks [25]. V.S. Sazhin presented the sloping faces of a trapezoidal 
foundation as stepped ones in the calculation scheme. To calculate heaving deformations, V.S. Sazhin 
proposed a design model of freezing soil in the form of a cylinder, with a taper representing a pyramidal 
pile being placed in it [26]. He used the equation of axisymmetric thermal stress of the soil cylinder. Z.G. Ter-
Martirosyan [27] considered the stress-strain state of a freezing cylindrical soil element surrounding the 
pile. X.Y. Xu and others [28] suggested calculating foundations by the finite difference method, taking into 
account the stiffness of the foundation that limits soil heaving. G.Q. Kong and others [29, 30] conducted 
analytical study of a taper pile with an expanded base. They analyzed side resistance of the pile, taper 
angle and diameter of the lower base by numerical simulation methods and obtained increased load-
bearing capacity of the taper pile for its lifting and under the action of negative soil friction. This is of interest 
for piles under conditions of soil frost heaving and soil thawing. M. Schafer and S.P. Madabhushi [14] 
mathematically described the behaviour of expanded base piles in layered soils increasing in volume. This 
mechanism of pile-soil interaction may find its application in frost heaving conditions. P. He et al [31] 
obtained analytical solution for calculation of trapezoidal channel in frost heaving. H. Jiang and others [32] 
developed a method for designing a parabolic channel in frozen soil using digital technology. Wu Y. and 
others [33] calculated stresses and strains of soil around a single bridge pile during freezing and used non-
linear finite-element model of pile-soil interaction. S. Jianzhong and others [34] presented a numerical 
three-dimensional model of a bridge pile foundation in permafrost. It is evident from their research that 
calculation methods for piles of complex configurations have received attention in scientific practice. 
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Piles with reverse surface slope, on the one hand, are effective in conditions of soil frost heaving due 
to their configuration, on the other hand, they require more complex approaches to their calculation than 
piles of constant section. B.S. Yushkov and others [35–36] gave an analytical quantitative assessment of 
the effect of the angle of surface slope on pile displacement. However, the angle in each case was not 
calculated, but was set from a limited number of values, as the pile was manufactured in factory conditions. 
So this method of selecting geometric parameters of piles is time-consuming. The author of the paper  
[37–38] has developed a method for calculating the pile with the upper reverse taper, which makes it 
possible not to select, but to calculate the geometric parameters of the pile with the least time and labor 
consumption. As the upper reverse taper pile is only one of the variants of piles with reverse surface slope, 
other pile configurations need to be considered for design practice.  

The aim of the study is to extend the taper pile design method developed by the author to prismatic 
piles with sloping faces (prismatic face slope piles). To achieve the aim, the following tasks have been set:  

− to model square, hexagonal and octagonal prismatic piles with the upper part in the form of 
truncated pyramid; 

− to obtain equations with respect to geometric parameters of piles in the soil under the action of 
heaving forces; 

− to estimate material capacity of piles. 

2. Methods 
A cylindrical pile with the upper reverse taper in frost heaving conditions was developed by the author 

[37–38] in previous works. However, a special case of a taper is a pyramid, i.e. taper is a pyramid with an 
infinite number of faces. This paper describes behavior of a cylindrical reverse taper pile and several 
prismatic face slope piles under frost heaving, the cross-sections of the prismatic ones being square, 
hexagonal and octagonal. The upper part of the prismatic piles is designed as a truncated pyramid. 
Calculation schemes for two cases of frost boundary position along the height of the piles are shown in 
Fig. 1. 

In Fig. 1 ,fS  fiT  are the frost heaving normal and tangential forces and iF  is the frictional force on 

the side of the pile in the thawed soil, respectively; P  is the sum of the external load and the pile weight 
and α  is the pile surface angle. The figure also shows the position of the inherent sections of the pile: 0z  

is the bed of non-heaving material under the grillage; ( )tp prz  is the bottom base of the taper (pyramid), 

plz  is the base of the pile. 

Table 1 shows the input data for the pile design, where the soil conditions are represented by a stiff 
clay loam with a liquidity index of 0.4. 

Table 1. Initial data for piles calculation 

№ Parameter name Parameter 
designation 

Parameter 
value 

1 Frost heaving tangential stresses fτ  100 kPa 

2 Frost heaving normal stresses fσ  200 kPa 

3 Sum of the external load on the pile and the pile weight P  130 kN 

4 Side resistance of the pile in the thawed soil if  26 kPa 

5 Frost boundary position ξ  2.1 m 
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                    a                                                       b 

 Figure 1. Two cases of frost boundary position of the pile:  
a) frost boundary within the part of the pile with a surface slope;  
b) frost boundary within the part of the pile of constant section. 

 

2.1. Cylindrical pile with upper reverse taper 
The bearing capacity of the cylindrical pile (Fig. 2a) for tangential frost heaving forces is 198.6 kN 

and tangential frost heaving forces is 231.2 kN. Thus, the tangential frost heaving forces that cause pile 
uplift exceed its bearing capacity and the condition of pile stability is not met. In this case we propose to 
specify the taper of the pile and determine the taper angle required for pile stability in the soil, the latter 
referring to the absence of vertical displacement, i.e. lifting. The taper angle is determined from the equation 
(1) obtained by the author [37–38]. 

Fig. 2b illustrates the cylindrical pile with an upper reverse taper and the coordinates of inherent 
sections. Fig. 2b shows a part of the taper ,tpL  subject to the influence of frost heaving forces. clR  is the 

radius of the cylindrical part of the pile. 

 

 
                          a      b 

 Figure 2. Piles with (a) constant section and (b) upper reverse taper, mm. 
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The equilibrium equation for the pile under the action of frost heaving forces [37–38] is illustrated in 
Fig. 1b and 2b. 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2 22
0 0 1 0

1
1 0 2 2

0.5 sin 0.5 sin

0.5 0.

f tp cl f tp f tp

cl f tp f tp pl

z z R z z z z

R z z z f z P−

 σ − α + − σ − − τ − α +  
 + τ − + τ ξ − − −ξ − π = 

       (1) 

The equation will make it possible to determine the taper angle required to ensure stability of the pile 
in the soil under frost heaving. 

2.2. Prismatic square pile 
A prismatic pile with a square cross section having sloping faces (hereinafter, prismatic square pile) 

is considered in the same soil conditions as the cylindrical taper pile discussed above, and their lengths are 
equal. Fig. 3 shows the pile and coordinates of its inherent sections. In Fig. 3 prL  is a part of the pyramid 

subject to the influence of frost heaving forces; pra  is the side of the upper base of the pyramid exposed 

to frost heaving forces; ( )pra z  is the variable face width; pla  is the side of the bottom base of the pyramid. 

 
Figure 3. Prismatic square pile with sloping faces, mm. 

Fig. 1b shows the forces acting on sloping and vertical faces of piles. The upper part of the prismatic 
pile is designed as a truncated pyramid. 

The normal frost heaving force acting on the sloping faces of the pyramid (Fig. 1b) is presented as 
follows: 

0

,
pr

f f pr

z

z
S dF= σ∫                                                                 (2) 

where prF  is the side surface area (hereinafter surface area) of the pyramidal part of the pile. 

The tangential frost heaving force acting on the sloping faces of the pyramid is presented by the 
equation 

1 1
0

.
pr

f f pr

z

z
T dF= τ∫                                                                    (3) 
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And equation (4) presents tangential frost heaving force acting on vertical faces of the constant-
section pile in the frozen zone. 

2 2 ,f f pl
prz

T dF
ξ

= τ∫                                                                  (4) 

where plF  is the side surface area (hereinafter surface area) of the pile part with constant cross-section. 

The frictional force on the side of constant section pile in the thawed soil is as follows: 

2 2 .
pl

pl

z
F f dF

ξ
= ∫                                                                    (5) 

Equation for the face slope angle of the square pile is based on equilibrium of acting forces. The 
equilibrium equation at frost boundary position 0 prz z< < ξ  (see Fig. 1b) is as follows: 

1 2 2sin cos 0.f f fP S T T F− − α + α + − =                                         (6) 

Supposing that at small angles of face slope cos 1,α ≈  we rewrite the equation (6) as follows: 

1 2 2sin 0.f f fP S T T F− − α + + − =                                               (7) 

Taking into account inherent sections in Fig. 1b and 3 and expressions (2–5), equation (7) will look 
like 

21 2
0 0

sin 0.
pr pr pl

f pr f pr f pl pl

pr

z z z

z z z
P dF dF dF f dF

ξ

ξ 
 − − σ α + τ + τ − =  
 
∫ ∫ ∫ ∫                 (8) 

The upper part of the square pile is designed as a truncated pyramid. Fig. 4 shows the projection of 
the pyramid face to the vertical plane, where z  is an arbitrary coordinate; prdF  is a variable area of the 

elementary stripe of the pyramid face. For small angles, it is assumed that the face area is equal to the 
area of its projection. 

 
Figure 4. Pyramid face. 

The variable area of the elementary stripe of the pyramid face, according to Fig. 4 is as follows: 

( )4 .pr prdF a z dz=                                                                (9) 

Its variable width is as follows: 

( ) 2 .pr pra z a= + ∆                                                               (10) 
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Taking into account ( )0 ,z z tg∆ = − α  and at small angles sin ,tgα ≈ α  we obtain 

( ) ( )02 sin .pr pra z a z z= + − α                                                 (11) 

From the condition 

( ) ( )
0

2 2
sin ,pl pr

pr

a a
tg

z z

−
= α ≈ α

−
                                            (12) 

we have 

( )02 sin .pr pl pra a z z= − − α                                                   (13) 

After substituting (13) in expression (11), we obtain 

( ) ( )( ) ( )0 02 sin 2 sin .pr pl pra z a z z z z= − − α + − α                             (14) 

After simplifying (14), the variable width of the elementary stripe will be written as the expression 

( ) ( )2sin .pr pl pra z a z z= − α −                                               (15) 

Taking into account (15), the variable area of the elementary stripe of the pyramid surface along its 
perimeter (9) will be 

( )4 2sin .pr pl prdF a z z dz = − α −                                              (16) 

The elementary stripe area of the constant section pile along its perimeter is 

4 .pl pldF a dz=                                                                (17) 

Equation (8) after substituting (16) and (17) will be written as 

( )

( ) 21

0

2

0

4 2sin sin

4 2sin 4 4 0.

pr

f pl pr

pr pl

pl pr f pl plf
pr

z

z

z z

z z

P a z z dz

a z z dz a dz f a dz
ξ

ξ

 
  − − σ − α − α +   
 

 + τ − α − + τ − = 

∫

∫ ∫ ∫

         (18) 

After transformations, the equation (18) will take the form of a quadratic equation with respect to the 
sine of the face slope angle of the pyramidal part of the pile. 

( ) ( ) ( ) ( )

( ) ( ) ( )
1

1 2

2 22
0 0

0 2

sin sin

0.25 0.

f pr pl prf

pl pr pr prf f

z z a z z

a z z z f z P

 σ − α + − σ− τ − α +  
 + τ − + τ ξ − − −ξ − =  

                    (19) 

The equation will make it possible to determine the taper angle required to ensure stability of the pile 
in the soil under frost heaving. 

2.3. Prismatic hexagonal pile 
A prismatic hexagonal pile with sloping faces (hereinafter prismatic hexagonal pile) is considered 

under the same soil conditions as the cylindrical taper pile discussed above and their lengths are equal. 
Fig. 5 shows the pile with the coordinates of the inherent sections. In Fig. 5 clR  is radius of the circle 
inscribed in the bottom base of the pyramid, i.e. radius of the cylinder inscribed in the hexagonal constant-
section of the pile. 
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Equation for the face slope angle of the hexagonal pile is based on equilibrium of acting forces. The 
equilibrium equation at frost boundary position 0 prz z< < ξ  (see Fig. 1b and 5) with regard to the inherent 

sections and expressions (2-5) is as follows: 

1 2
2

0 0

sin 0.
pr pr pl

f pr pr pl plf f
pr

z z z

z z z
P dF dF dF f dF

ξ

ξ

 
 − − σ α + τ + τ − =  
 
∫ ∫ ∫ ∫                  (8) 

The upper part of the pile is designed as a truncated hexagonal pyramid. The bottom base of the 
pyramid corresponds to a cross-section of a part of the pile with constant size. The angle of face slope for 
the truncated pyramid is calculated through the variable radius of the taper inscribed in the pyramid (Fig. 6). 
Fig. 6 shows: tpdF  is the variable surface area of the elementary strip of the inscribed taper; tpR  is the 

radius of the upper base of the inscribed taper subjected to soil frost heaving; ( )tpR z  is the variable radius 

of the taper; clR  is the radius of the bottom base of the inscribed taper. 

Radius of the circle inscribed in the bottom base of the pyramid, i.e. radius of the cylinder inscribed 
in the hexagonal section of the pile, is calculated as follows: 

( )
285.8 mm,

2 6
pl

cl
a

R
tg

= =
π

                                                       (20) 

where pla  is the face width of the hexagonal constant section pile (Fig. 5). 

The variable area of the elementary stripe around the perimeter of the truncated hexagonal pyramid 
will be 

( ) ,prdF P z dz=                                                                        (21) 

where ( )P z  is the perimeter of the elementary pile stripe at its pyramidal part. 

The perimeter of the elementary stripe of the pyramid surface is calculated through the radius of the 
inscribed circle. 

( )2 ,P Rntg n= π                                                                       (22) 

where n  is the number of faces of the pyramid; R  is the radius of the inscribed circle. 

The perimeter of the hexagonal pyramid is 

6.928 .P R=                                                                            (23) 

If the radius of the inscribed circle is assumed to be the variable radius of the taper inscribed in the 
pyramid, the area of the elementary stripe on the pyramidal part of the pile (21) will be as follows: 

( ) ( )6.928 ,pr tpdF P z dz R z dz= =                                                   (24) 

where ( )tpR z  is the variable radius of the taper inscribed in the pyramid (Fig. 6). 

According to Fig. 6, the expression for the variable radius of the inscribed taper is presented as the 
equation 

( ) .tp tpR z R= + ∆                                                                 (25) 

Taking into account ( )0 ,z z tg∆ = − α  we obtain the equation 

( ) ( )0 .tp tpR z R z z tg= + − α                                                      (26) 
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Figure 5. Prismatic hexagonal pile with sloping faces, mm. 

 
Figure 6. Taper inscribed in the pyramid. 

Based on the condition 

( ) ( )0 ,cl tp tpR R z z tg− − = α                                                        (27) 

the expression for radius of the inscribed taper will be as follows: 

( )0 .tp cl tpR R z z tg= − − α                                                             (28) 

Then the expression for the variable radius of the taper (26) in view of (28) will be 

( ) ( ) ( ) ( )0 0 .tp cl tp cl tpR z R z z tg z z tg R tg z z = − − α + − α = − α −                     (29) 

Taking into account the variable radius of the inscribed taper (29), the expression for the area of the 
elementary stripe on the hexagonal pyramidal part of the pile (24) is written as 

( )( )6.928 .pr cl tpdF R tg z z dz= − α −                                                    (30) 

Given sintgα ≈ α  for small angles, we obtain an expression for the area of the elementary stripe 
of the pyramid along its perimeter 
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( )( )6.928 sin .pr cl tpdF R z z dz= − α −                                                  (31) 

where α  is the angle of formatrix slope of the inscribed taper, clR  is the radius of the circle inscribed in 
the hexagonal base of the pyramid. 

As for the elementary surface stripe of the constant section pile, its area along the perimeter will be 

6 .pl pldF a dz=                                                                          (32) 

Then equation (8) with account of (31) and (32) will be written as a quadratic equation with respect 
to the sine of the face slope angle of the pyramidal part of the pile. 

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1

1 2

2 2
0

2
0 0

0 2

3.464 sin

6.928 3.464 sin

6.928 6 0.

f tp

cl f tp tpf

cl tp pl tp clf f

z z

R z z z z

R z z a z f z P

σ − α +

 + − σ − − τ − α +  
 + τ − + τ ξ − − −ξ − =  

                   (33) 

The equation will make it possible to determine the taper angle required to ensure stability of the pile 
in the soil under frost heaving. 

2.4. Prismatic octagonal pile 
A prismatic pile with an octagonal cross section and sloping faces (hereinafter a prismatic octagonal 

pile) is considered in the same soil conditions as the cylindrical pile with a taper discussed above. The 
lengths of the prismatic pile and cylindrical one discussed above are the same. Fig. 7 shows the pile with 
coordinates of the inherent sections. 

Equation for the face slope angle of an octagonal pile is based on equilibrium of acting forces. Taking 
into account inherent sections and expressions (2–5), the equilibrium equation at frost boundary position 

0 prz z< < ξ  (see Fig. 1b) is as follows: 

21
2

0 0

sin 0.
pr pr pl

ff pr pr pl plf
pr

z z z

z z z
P dF dF dF f dF

ξ

ξ

 
 − − σ α + τ + τ − =  
 
∫ ∫ ∫ ∫                 (8) 

The upper part of the pile is designed as a truncated octagonal pyramid. The bottom base of the 
pyramid corresponds to a cross-section of the part with constant size. The angle of face slope of the pyramid 
is calculated through the variable radius of the taper inscribed in the pyramid (Fig. 6). Radius of the circle 
inscribed in the bottom base of the pyramid (Fig. 7) is calculated as follows: 

( )
298.7 mm.

2 8
pl

cl
a

R
tg

= =
π

                                                    (34) 

Variable surface area of the elementary stripe of the truncated pyramid is 

( ) .prdF P z dz=                                                                 (21) 
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Figure 7. Prismatic octagonal pile with sloping faces, mm. 

The perimeter of the elementary stripe of an octagonal pyramid is 

6.627 ,P R=                                                                        (35) 

where R  is the radius of the inscribed circle. 

The radius of the circle inscribed will be considered as a variable radius of the taper inscribed in the 
pyramid. Then, taking into account the variable radius of the taper (21), the area of the elementary stripe 
on the pyramidal part of the pile is written as 

( ) ( )6.627 .pr tpdF P z dz R z dz= =                                                      (36) 

When substituting the equation (29) in the expression (36) we obtain the equation 

( )( )6.627 .pr cl tpdF R tg z z dz= − α −                                              (37) 

Given sintg α α≈  for small angles, the expression for the area of the elementary stripe of the 
pyramid along its perimeter can be written as 

( )( )6.627 sin .pr cl tpdF R z z dz= − α −                                              (38) 

The area of the elementary surface stripe of the constant section pile along its perimeter is as follows: 

8 .pl pldF a dz=                                                              (39) 

where pla  is the width of the face of the octagonal constant section pile. 

Equation (8) with regard to (38) and (39) will be written as a quadratic equation with respect to the 
sine of the face slope angle of the pyramidal part pile. 

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1

1 2

2 2
0

2
0 0

0 2

3.314 sin

6.627 3.314 sin

6.627 8 0.

f tp

cl f tp tpf

cl tp pl tp clf f

z z

R z z z z

R z z a z f z P

σ − α +

 + − σ − − τ − α +  
 + τ − + τ ξ − − −ξ − =  

                   (40) 
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The equation will make it possible to determine the taper angle required to ensure stability of the pile 
in the soil under frost heaving. 

2.5. Equation of face slope piles in general form 
The equation for prismatic pile with sloping faces in general form is based on the equilibrium of all 

forces acting on the piles in the freezing soil. 

1 2
2

0 0

sin 0.
pr pr pl

f pr pr pl plf f
pr

z z z

z z z
P dF dF dF f dF

ξ

ξ

 
 − − σ α + τ + τ − =  
 
∫ ∫ ∫ ∫                 (8) 

The upper part of the piles is designed as a truncated pyramid. The variable elementary surface area 
of the pyramid is 

( ) .prdF P z dz=                                                                 (21) 

The perimeter of the elementary stripe of the pyramid surface through the radius of the inscribed 
circle is 

( )2 ,P Rntg n= π                                                                       (22) 

where n  is the number of faces of the pyramid, R  is the radius of the inscribed circle. 

If the radius of the incircle is assumed to be the variable radius of the taper inscribed in the pyramid, 
then the expression (21) considering (22) will be as follows: 

( ) ( ) ( )2 ,pr tpdF P z dz n tg n R z dz= = π                                                (41) 

where ( )tpR z  is the variable radius of the taper inscribed in the pyramid. 

Then the area of the elementary stripe of the pyramidal part of the pile (41) with account of the 
variable radius of the taper (29) will be written as 

( ) ( )( )2 .pr cl tpdF n tg n R tg z z dz= π − α −                                            (42) 

where clR  is the radius of the circle inscribed in the base of the pyramid. 

Given tg sinα ≈ α  for small angles, the expression (42) will be as follows: 

( ) ( )( )2 sin .pr cl tpdF n tg n R z z dz= π − α −                                           (43) 

The elementary stripe area of a constant section pile along its perimeter will be 

.pl pldF na dz=                                                                    (44) 

where pla  is the face width of the constant section pile. 

Equation (8) with (43) and (44) will be written as a quadratic equation with respect to the sine of the 
face slope angle of the pyramidal part of the pile. 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( )

1

1

2

2 2
0

2
0 0

0

2

sin

2 sin

2

0.

f tp

cl f tp tpf

cl tpf

pl tp clf

ntg n z z

ntg n R z z ntg n z z

ntg n R z z

na z f z P

π σ − α +

 + − π σ − − π τ − α +  

+ π τ − +

 + τ ξ − − −ξ − =  

                 (45) 

The equation will make it possible to determine the taper angle required to ensure stability of the pile 
in the soil under frost heaving. 
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3. Results and Discussion 
The paper considers a cylindrical pile with an upper reverse taper and prismatic pile with sloping 

faces in the upper part, operating under frost heaving conditions. The cylindrical pile was developed by the 
author earlier. Prismatic piles with four, six and eight faces are modeled in this study. The upper part of the 
cylindrical pile is a truncated taper while that of the prismatic pile looks like a truncated pyramid with a 
different number of faces.  

The author provides equations of equilibrium for prismatic piles with sloping faces, the equations 
being presented in integral form. These equations establish a relationship between the geometric 
parameters of the piles and the magnitudes and ratios of these forces, which makes it possible to determine 
the parameters of the piles. Considering the soil in the framework of elasticity theory, the integral values of 
forces within the given intervals are taken equal to their average values. In view of this and also sectional 
variability, the equilibrium equations are transformed into second-order equations with respect to geometric 
parameters of piles. To derive the second-order equations, the area of a truncated pyramid is used, the 
area being represented through the variable width of the faces and the variable radius of the taper inscribed 
in the pyramid. The calculation method developed by the author can be used for prismatic piles with any 
number of faces. The equations are given in Table 2. 

Table 2. Pile equations. 

Pile type Equation regarding the geometric parameters of the pile Equation 
number 

Cylindrical 
pile with 
upper 

reverse 
taper 

1

1 2

2 2
0

2
0 0

1
0 2

0.5 ( ) (sin )

[ ( ) 0.5 ( ) ](sin )

[ ( ) ( ) ( )] 0.5 0.

f tp

cl f tp f tp

cl f tp f tp pl

z z

R z z z z

R z z z f z P−

− +

+ − − − − +

+ − + − − − − =

σ α

σ τ α

τ τ ξ ξ π

 (1) 

Prismatic 
octagonal 

pile  1

1 2

2 2
0

2
0 0

0 2

3.314 ( ) (sin )

[ 6.627 ( ) 3.314 ( ) ](sin )

6.627 ( ) 8 [ ( ) ( )] 0.

f tp

cl f tp f tp

cl f tp pl f tp cl

z z

R z z z z

R z z a z f z P

− +

+ − − − − +

+ − + − − − − =

σ α

σ τ α

τ τ ξ ξ

 (40) 

Prismatic 
hexagonal 

pile  1

1 2

2 2
0

2
0 0

0 2

3.464 ( ) (sin )

[ 6.928 ( ) 3.464 ( ) ](sin )

6.928 ( ) 6 [ ( ) ( )] 0.

f tp

cl f tp f tp

cl f tp pl f tp cl

z z

R z z z z

R z z a z f z P

− +
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σ α

σ τ α
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 (33) 

Prismatic 
square pile  

1

1 2

2 2 2
0 0

0 2

( ) (sin ) [ ( ) ](sin )

[ ( ) ( ) ( )] 0.25 0
f pr pl f pr

pl f pr f pr pl

z z a z z

a z z z f z P

− + − − − +
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σ α σ τ α
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Equation of 
a prismatic 

pile in 
general form 

1

1 2

2 2
0

2
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0 2
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π σ π τ α
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(45) 

 

For the conditions, given in Table 1, the geometric parameters of the piles such as cylindrical piles 
with upper reverse taper and prismatic piles with sloping four, six and eight faces have been obtained. The 
piles operate in the same soil and climatic conditions and are loaded with the same vertical load. All piles 
meet the design requirements for the section size at the point of embedding in the pile grillage. The length 
of all the piles is 3.0 m. The cross-section of the lower part of the piles is constant. The length and cross-
section of the lower part is calculated from the condition of the vertical compressive load in the thawed soil, 
i.e. in summer. The cross-section of the upper part of the pile is variable with a sloping surface. The 
corresponding top length and angle are limited by the cross-section of the pile at the embedment point in 
the pile grillage. The surface slope angle is obtained from the equilibrium condition of the pile in the soil 
under the action of frost heaving forces. The parameters of the pile are shown in Table 3. 
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Table 3. Parameters of piles. 
Parameters of  

piles 
Piles type  

Bearing 
capacity of 

piles in thawed 
soil, кN 

Pile (inscribed 
circle) radius, 

 m 

Taper 
(pyramid) 

length,  
m 

Taper (inscribed 
taper) angle, 

degree 

Pile 
volume, 

m3 

Cylindrical pile with taper 134.92 0.3 1.0 5.96 0.73 
Prismatic octagonal pile  134.29 0.2897 1.0 6.13 0.71 
Prismatic hexagonal pile  134.72 0.2858 1.1 5.57 0.71 

Prismatic square pile 135.0 0.54, face width 1.33 4.6, face angle 0.70 
 

A comparison of the piles (Table 3) for the geological conditions given in the article has shown that 
under equal geological conditions with the same vertical load, the square pile with sloping faces has the 
smallest volume. Consequently, the minimum material capacity has been shown by the prismatic square 
pile. As the pile spacing in the group is determined by the cross-section, the square piles with sloping faces 
require the smallest space between them. 

Surface slope piles have been the subject of attention of many scientists. Piles with expanded base 
were investigated by V.F. Zhukov [2], B.S. Yushkov [7–8], S.V. Feshchenko [9], L. Domaschuk [10–11], 
M. Schafer and S.P. Madabhushi [14] and others. Huang and Sheng [12–13] tested bell-shaped piles. 
However, in existing studies the range of configurations is mostly limited to cylindrical piles, although 
prismatic piles also occur in design and construction practice. The author of the paper has considered the 
performance of both cylindrical and prismatic piles in heaving soil and developed a method for calculating 
the geometric parameters of piles under the set conditions. 

Another important aspect is applicability and practical relevance of the calculation factors. 
V.S. Sazhin [39] investigated the behavior of the soil under a strip foundation and derived an equation for 
the soil uplifting and internal forces of the foundation. Relying on the equality of works [26] performed by 
the forces that contribute to the pile uplift and prevent it, V.S. Sazhin [26] also determined the displacement 
of a pile in the swelling soil. He pointed out that, despite different nature of soil swelling and heaving, the 
deformations of foundations caused by these processes were due to similar laws. Therefore, in his 
calculations he used the same methods both for swelling and frost heaving soils. V.S. Sazhin obtained a 
universal formula for the vertical displacement of piles with any cross-section under heaving forces. 

Later on B.S. Yushkov and D.S. Repetsky [40] proposed a formula for calculating the displacements 
of a ‘double cone pile’ [40] under the action of tangential frost heaving forces. These equations can be 
successfully used to verify the displacements of piles operated under frost heaving. However, based on the 
personal experience, the author considers the geometric parameters of foundations that ensure zero 
displacement under specified conditions more important than displacements themselves. So, in 
construction design, the author emphasizes the importance of using the equations for calculating 
geometrical parameters of foundations, which is especially true for piles of complex shapes, in particular 
those with a surface slope. 

In the paper the author presents solutions to determine the required geometric parameters of 
cylindrical piles with upper reverse taper and prismatic piles with sloping faces, where the equilibrium is 
zero displacement of piles under the action of frost heaving forces. The author follows the system approach 
to the solution of the problem, i.e. takes into account the frost boundary position, values of soil frost heaving 
forces, etc. 

When deriving equations for calculating prismatic piles with a pyramidal part, the author uses the 
expression for the variable radius of the inscribed taper and the same experimental approaches [38] as for 
the pile with taper. It is due to the fact that the cylindrical pile with the upper reverse taper is effective in 
frost heaving conditions due to the taper part, while the prismatic pile with sloping faces provides such 
efficiency due to the pyramidal part. Taking into account that a taper is a pyramid with an infinite number of 
faces, the latter may be considered as a special case of a taper. 

Modern methods of calculating piles under frost heaving conditions do not distinguish between 
cylindrical and prismatic piles. Only the surface area of the pile subject to frost heaving forces is taken into 
account. However, the author's experience reveals that in seasonally freezing soils the ribs of a prismatic 
pile affect the size and speed of its lifting by frost heaving forces. The rib effect and the difference in the 
operation of prismatic and cylindrical piles under frost heaving have become the subject of the author’s 
further research. 
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4. Conclusion 
With large areas affected by frost heaving, protection methods based on the properties of 

constructions, without use of additional elements and measures, are of particular interest. Such 
constructions are piles with reversed surface slope, whose configuration makes it possible to reduce the 
negative effect of frost heaving.  

In this study, the calculation method for cylindrical piles with an upper reverse taper is extended to 
prismatic piles with sloping faces. Equations for calculating geometric parameters of piles with sloping faces 
are derived and conclusions on the material capacity of the piles are drawn. The equations make it possible 
to determine geometric parameters of piles ensuring their stability in soil under the action of tangential frost 
heaving forces. 

Further research will be aimed at performance of face slope piles in a group, as well as technological 
provisions for manufacturing piles at the construction site and in the factory. Attention will be paid to the 
automation of the developed calculation method for surface slope piles. 
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