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Abstract. A solution to the problem of parametric oscillations of a viscous-elastic orthotropic shallow shell
of variable thickness is presented. Dynamic loading acts along one side of the shell in the form of a periodic
load. Unlike linear problems, the nonlinear problem under consideration could not be solved by applying
analytical methods; therefore, approximate methods were used. The mathematical model of the problem is
built within the Kirchhoff-Love theory. In this case, tangential inertial forces and geometric non-linearity are
taken into account. Deflection and displacements approximation is performed using the Galerkin method in
higher order approximations, which allows reducing the problem solution to a system of nonlinear integro-
differential equations (IDE) with variable coefficients. The weakly singular Koltunov-Rzhanitsyn kernel with
three rheological parameters is used as the relaxation kernel; it describes the viscous-elastic properties of
the shallow shell. A numerical method based on the use of quadrature formulas is used to obtain a resolving
system of equations for the problem. To obtain numerical results, a computer software was compiled in the
Delphi environment for a computational algorithm of the problem solution. The effects of viscous-elastic,
orthotropic, nonlinear properties of the shell material, thickness variability, and other physical, mechanical,
and geometrical parameters on the dynamic strength of a shallow shell are studied.
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1. Introduction

The problem of parametric oscillations of elastic and viscous-elastic thin-wall structures (plates and
shells of variable thickness) is one of the most relevant problems in the mechanics of a deformable rigid
body. The solution to such problems is of great importance for the modern aerospace industry, rocket
technology, and mechanical engineering. Structural elements (plates and shells of variable thickness) can
be found in many engineering and building structures, in aviation and motor transport, and in various units.

The first studies devoted to the problem of parametric oscillations of plates and shells of constant
thickness, within the framework of the theory of thin plates, include the research work by V.V. Bolotin [1].
To solve problems, he used methods based on the variational approach.

There are a great number of articles in the literature devoted mainly to the dynamic stability and
parametric oscillations of elastic thin-wall structures (plates, panels, and shells) under the impact of periodic
load.

© Khodzhaev, D.A., Abdikarimov, R.A., Amabili, M., Normuminov, B.A., 2023. Published by Peter the Great St.
Petersburg Polytechnic University.
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An analysis of the study of oscillation problems of shells made of various materials, conducted in the
period from 2003 to 2013, can be found in [2], [3]. It also contains a review of publications related to
parametric oscillations.

Analytical and numerical solutions for different types of structures (plates and shells) were
considered in [4].

In [5], the dynamic stability of truncated-conical shells under dynamic axial load was studied. To
solve the problem, described by a differential equation of the Mathieu-Hill type, the Galerkin method was
used.

Reference [6] is devoted to the dynamic stability of a linearly elastic thin rectangular plate subjected
to a bi-axial time-varying load. The differential equation of plate motion was solved using the finite difference
method (FDM). To identify domains of dynamic stability, the Mathieu-Hill equation was derived.

The dynamic stability of a viscous-elastic rectangular plate subjected to constant and variable loads
in the plane of the plate was considered in [7]. The equation of motion is described by an integro-differential
equation with respect to an unknown time function. The effect of the viscous-elastic characteristics of
material on the dynamic instability zone was shown.

Reference [8] considers the dynamic instability of laminated non-homogeneous orthotropic
truncated-conical shells under periodic axial loading. The problem was reduced to solving the Mathieu
equation. Bolotin's method was used to evaluate the behavior of the shell for various parameters.

The dynamic instability of layered composite panels of variable stiffness under non-uniform periodic
excitation was studied in [9]. The Ritz method was used to obtain the resolving system of equations for the
problem. The domains of dynamic instability were constructed by the Bolotin method.

In [10], the behavior of a footbridge under rhythmic loading was studied. The footbridge was
considered a shell of variable thickness. The problem was solved by the FEM. The influence of different
mass distributions along the footbridge on its dynamic behavior was analyzed.

In [11], the dynamic stability of a cylindrical shell with linear variable thickness was considered under
axial forces and pulsed external pressure. The Bubnov—-Galerkin method was used to solve the problem. A
resolving system of equations for the problem was derived in the form of an infinite system of homogeneous
algebraic equations.

In [12], the dynamic instability of toroidal shells was studied. The Galerkin method was used to obtain
a semi-analytical solution to the problem. The results obtained were compared with the ones available in
the literature. The effect of various geometric and mechanical parameters on the dynamic instability of
shells was studied.

A study of the nonlinear dynamic stability of a cylindrical shell of variable thickness is given in [13].
The equation of motion was derived based on the classical theory of shells in a geometric non-linear
formulation. The solution to the equation was obtained by the fourth-order Runge-Kutta method and the
Galerkin method. The effect of the characteristics of material and geometrical parameters on the dynamic
behavior of a shell was investigated.

In [14], the impact behavior of an elastic spherical shell under step pressure was considered. Initial
geometric imperfections were introduced.

The study in [15] concerns the analysis of the nonlinear dynamic behavior and stability of
heterogeneous axisymmetric shells of variable thickness. The equation of motion was constructed based
on the Kirchhoff-Love hypothesis. The Ritz method was used.

In [16], the dynamic behavior of a three-layer (sandwich) conical shell under the action of a periodic
load was studied. At that, various boundary conditions were considered. The problem was reduced to
solving an equation of the Mathieu-Hill type, the solution of which was obtained by the Bolotin method. The
results obtained were compared with the results obtained by other authors.

The behavior of a sandwich plate under periodic load was considered in [17]. Using the constructed
mathematical model of the problem, the effect of various geometric and mechanical parameters of a plate
on its dynamic behavior was studied.

The study in [18] is devoted to the dynamic instability of a cylindrical shell made of a thin-walled
composite material. The ABAQUS program was used. The influence of the parameters of periodic loading
and initial geometric imperfections on the dynamic behavior of the shell was investigated.

In [19], the dynamic stability of sandwich panels under periodic load was considered. The solution to
the problem was obtained by reducing the obtained equation of motion to an equation of the Mathieu type
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and applying the Bolotin method. The effect of different geometric and mechanical parameters of panels
on their dynamic behavior was studied.

Reference [20] is devoted to the study of the dynamic stability of cylindrical composite shells under
the action of a pulsed loading. The FEM was used with the ABAQUS program. The impact of different
parameters on the dynamic behavior of the shell was shown.

In [21], an annular plate under external harmonic excitation was studied. Resolving equations were
derived based on the non-linear von Karman theory. New mechanical effects were observed.

A brief analysis of the available scientific publications showed that there are almost no studies of
nonlinear oscillations and dynamic stability of thin-wall structures (viscous-elastic plates and shells of
variable thickness) [22]-[24]. In the article below, nonlinear parametric oscillations of viscous-elastic
shallow shells of variable thickness are numerically studied.

The object of the research is various viscous-elastic thin-wall constructions of variable thickness.

The purpose of the study is to develop effective methods, algorithms and a computer program to
evaluate the dynamic behavior of thin-wall constructions, taking into account the viscoelasticity of the
material properties and variable thickness.

The following problems were solved to achieve this goal:

— to obtain resolving systems of nonlinear integro-differential equations with singular kernels of
viscous-elastic thin-wall constructions of variable thickness under the impact of periodical loads;

— to develop an effective approach to numerical solution, computational algorithm and software
products for evaluating the strength of viscous-elastic thin-wall constructions of variable
thickness under periodical influences.

2. Methods

A rectangular viscous-elastic shallow shell of variable thickness h(X,y) is considered with an
account fort the geometric nonlinearity based on the Kirchhoff-Love hypotheses. Let the shell be
dynamically loaded along side @ by a periodic load P(t) =P, + P, cos(®t), P,,P, =const,® -is the
frequency of external periodic load (Fig.1). A coordinate lines X and Yy of the curvilinear orthogonal

coordinate frame is directed along the lines of principal curvatures, and the Z -axis - along the internal
normal of the middle surface.

Figure 1. Shallow shell of variable thickness.

The system of equations of motion in the framework of the chosen theory has the following form [25]

oN 2 oN oN 2
%+ Xy+px—ph6u=0, Xy y+py_ ﬂzo,
ox oy ot ox oy at’
2 0*M 2
0 M2X+ 2y+28 H +kXNX+kyNy+i NX@JF ny@ + 1)
OX oy OXoy OX OX oy

0 ow ow o°w o°w
+—| Nyy—+N,— |+ P(t)—+q—-ph—-=0,
ay( Y ox yayJ v Rl Rl
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where ky=1/R; and ky =1/R, are the principal curvatures (R; and R, are the principal radii of

curvature) of the shell along the X and Yy axes, respectively; p,, Py and q - external static loads
applied to the shell element in directions X, y and Z .

The system of equations (1) is supplemented by the corresponding boundary conditions [25], which
will be used in the solution to the problems:

1. All edges are simply supported:
at Xx=0,a:u=0,v=0,w=0,M, =0; at y=0,b:u:0,v=0,W=0,My =0.

2. All edges are fixed:

at x:O,a:u=O,v:0,w=O,%=O;at y:O,b:u:O,v:O,W:O,@:O.
OX oy

3. Two opposite edges are simply supported, the other two edges are fixed:
at x=0,a:u :O,v:O,W:O,é—a\;\Izo; at y=0,b:u=0,v=0,w=0,M, =0.
The initial conditions at t=0 are as follows:
u(x,y,0)=up(x, y), u(x,y,0)=to(x, y), v(x,¥,0)=vo(x, y), V(x, ¥,0)=Vo(x,y),
w(x, y,0)=wo(x,y), Vi(x, y,0)=virg (x, y).

Here, uO(X, y), VO(X, y), WO(X, y), UO(X, y), \'/O(X, y) and V'\/O(X, y) are given functions.

The components of the vector of forces {N}:(Nx,Ny,ny) and moments

{M }: (M, ,M v M Xy) for symmetric structure shells in matrix form can be written as:

{N}: {Nx;Ny;ny}T = [C]-{g}, {M}:{Mx;My;Mxy}T =[D]'{}(}, (2)

here

{g}:(gx' Sy, 5xy)Tv {Z}:( x1 Xy ny)T,

ou 1w ov 1 ow)’ ou v owow
ex=———KW+| —| ey =——kW+>| —| gy =—+—+——, ©)
OX 2\ Ox oy 2\ oy OX 0oy oXx oy
_ow o dw _ d'w
Ax o2 1 Xy 6y2 » Axy oxoy
Stiffness matrices [C] and [D] have the following form:
Cii Cip Gy Dy D Dy
C=|Cyp Cyp Cyxy| D=[Dp Dy Dy (4)
Cis Co Cos Dig Dy Des

where the coefficients of the stiffness matrix Cij' Dij (i) =11,22,12,16,26,66) , depending on the
mechanical characteristics of the material and coefficient M are determined as follows:

h(x,y) h(x,y) h(x,y)
2 2 2
Cij = I B'J (1_Flj }12, DIJ = j B” (1_F|_| )ZZdZ, (l, J :1,2,6), m= _[pdz (5)
_h(xy) _hxy) _h(x,y)

2 2 2
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* *
Here Bij are the stiffness coefficients [26], T" ,I: ij —are the integral operators with relaxation

kernels F(t) and Tj; (t), respectively:

F*(p=il“(t—r)(p(f)dr, Fi]f(/)zil“ij(t—r)go(r)dr, i, j=12.

In operator form, the system of equations of motion (1) is written as:

2 2
LU+ LoV + Ligw = =L ,w—py +phzt—g, LogU + LypV + LogW = —Lyyw— py + ph%,
2 2
Lgqu + LgoV + Lggw = —Lgow—q — P(t)aaT\;V + phaat—\év. 6)

Here u,v and W - are the components of displacement vector {U} in the directions of the OX,
Oy, and Oz axes, respectively.
82 52 82 62 82 52
Li1=Cj1—+2C;s——+Cqs——, Lip =Ly =Cis—=+(Cpp +Cqp) +C :
11 11 16 66 6’)’2 12 21 16 6X2 12 66 Xy 26 6y2

ox? oxoy

0 0
L =—Lay = (KCiq +koCirp)— + (K Cip + KoCoi ) — |,
13 31 (( 111 T K2 12)8x (kiCr6 + k7 ze)ayj

0? 0? 0?
Loy =Ceg 2 +2Cy +Cy

oxay oy?’

0 0
Loa = Loy =| (kiCig + koCop) —+ (k/Ci» + ko Cop)— |,
23 = L32 (( 1“1 T Ko 26)8)( (kiCpp +k; ZZ)GyJ

02 02 02
L, = Cen ——+2C +C ,
22 = “66 o2 26 oxdy 22 8y2
ot o4 ot ot o4
Lag = Dy ——+ 2(Dyo+ 2Dgp )—a—— + 4D +4D 4+ Dy ———
33 11 a)(4 ( 12 Gﬁ)axzayz 16 6X36y 26 axayg 2 ay4

—(Cuuk2 + 2C pkyky + Cpok2 )

2 2
o1 ow 1 ow OW ow
LM‘“'V’W’CU)a—[_C”[_J 3o 5) +C16__}

X| 2 OX 2 oy ox oy
ol1_ (aw) 1. (aw) ow ow |
oy| 2 OX 2 oy OX oy

2 2
+ a_u_kxw+£(@j &4_% + @_kyw_i_i % aC_12+aC_16 +
OX 2\ Ox OX oy oy 2\ oy OX oy

ou ov owow | 0Cyg 0Cgg
H—F—t—— | —+—=|,
oy Ox oOx oy \ ox oy
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2 2
0|1 ow 1 oW OW OW
L“(“’“’W’C"')“{‘%(—) 5ol 3) ”66—_}

oX| 2 OX 2 OX oy
ol1 . raw? 1. (aw) ow ow
oyl 2 2 ax ) T2 oy ox oy

2] 2
+ a—u—kXW'i'l(aWj &4_% + @—kyWﬁ'i @ &4_% +
ox 2 oy ox ) ey 2oy ) oy T ax

ou, ov owow | dCy  Cep
oy oOx ox oy \ oy ox )

oDy , 0Dy j o oPw (6D12 , 326 , e j .\

o*w
L34(U,V,W,Cij,Dij)=2 (

acl ox oy oxoy? | ox oy X
Lo W [aD12 4 396 +28D66J+283W[6D22 .\ aDzej+
ox2oy\ oy ox oy ¥l oy ox

o°w( 9°Dy;  9°Dy, ., 0°Dig | 0°W([9°Dy, 02Dy . 0°Dyg
+ + +2 + + +2 +

2 82W[82D16 N 82D26 +282D66J+ 1[6\N

2
oxoy | ox> oy2 oxdy &j (ka11+kyC12)+

2

2
+ l(@j (kXC12 + ky022)+ %%(kxcﬂ; + kyC26)+

2\ oy
| [av 1(awﬂ (8u ov awawj}
+Cpo| ——kWH+—| — | |+C6| —+—+—— |/t
oy 2\ oy oy ox . ox oy

Low] o Jou o A awY
x| Moax 20 ax

2 2
+26_w{cl{a_ukxw+z(@ }cz{ﬂkng(@ ]+c66(6_u+@+Mj}+
X

N

OXoy OX 2\ ox oy oy

2wl . [eu 1(ow)? | ov 1( ow ) ou N owow
+y Ciy &—kxw+5 ™ +Cyy 5—kyw+§ E +Co| —+—+—— |} +

+%\;V[L11(U) + Ly (V) + Lyg(w) + |—14(W)]+%[|—21(U) + Log (v) + Log(W) + Log (W)]

If the shell under consideration has orthotropic properties, then the coefficients are C16 = C26 =0

and Djg = Dog = 0. In relationships (2), the stiffness matrices have the following form:
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Cll C12 0 Dll D12 0
C = C12 CZZ O y D= D12 D22 0 y (8)
0 0 Cg 0 0 Dg

Here, coefficients C;; and Dj; (ij =11,12, 22, 66) are expressed in terms of elastic constants B,
Es, Gpo, 14, Uy as follows:

Ci= hBll(l—Ffl)Zﬂl_—rﬁ)’ Cp = thz(l—Fzz)

1-py

_ hE2!1—r§2!

1-pmpy

Cpp = '312(1—F1*2)1 = ﬂzlil_t/ffz , Cep = 366(1—Féke)” = hGlz(l—Fge)

Dll:Bll(l_Fl*l)n %11—21:”% D22—|322(1 Fzz)"S:J—hEzl_rzz i

12Q1- )
Dy, = B12<1_F12)”3 izél( ﬂl/ljz))n Ces = B66(1 Fes)"'s 112 h’. ©)

Here Eq,E, —are the moduli of elasticity in the direction of the X and Yy axes; Gy, is the shear
modulus; f4, o —are the Poisson's ratios.

If the shell has isotropic properties ( El = E2,,ul = [y ), then the elements of the stiffness matrix take
a simpler form with two elastic constants E (modulus of elasticity) and x (Poisson's ratio)

cﬂ:czzzs(l_p*)qﬂll:_f;b, Cp= sl

CGG—(— ( )" ﬂzl(le)b D1y =Dz =B (1 F)hs M

12 120-4%)
DlgzﬂB(l—F*h ZIUEl Fz ’D66:—l /uB(l—F*)h—ZEl r
12 12(1-4°) 2

_ ﬂEh

. (20)
12 241+ p)
By introducing into equation (6) the following dimensionless quantities
_ 2
0 ho ho a b ho b ho

and taking into account relationship (9) for orthotropic shells and keeping the previous notation, we
obtain a dimensionless system of nonlinear integro-differential equations for problems of parametric

oscillations of a viscous-elastic orthotropic shallow shell of variable thickness. Here, operators LIJ take the
following form:

— +

|—11(U)=hA(1—Ffl)ZXilzj+12h(1—ﬂ1ﬂ2)g(1 Ffl)zyiz o A(l Fll)gi
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+/12%h(1—u1ﬂ2)9(1 r )Z;
LlZ(V):’ih[”zA(l_er) (- a5 )g (1 r )—JJ“Z_:ﬂzA(l Flz)%+
/1%:(1—#1#2)9(1 r )g

B e A

hA(_ )awa2wzh
668 Wox x5

ow d*w
oy 8Xay

Agh owow oh| A « Y ow)?
+ (- )= : (— )——4‘—{%(1111(—) +

Lyg(w) = [ﬂzA(l r12) (- a1)9 (1 F)

5 ox oy? o ox

2
AppA (0 Y oW ch yIs) OW oW
+ 25 (1 FlZ(ay) ]+ (1 /Jl/,lz) S (l )ax 8y

L21(u):%[%(1—rﬁl) +(1- r112 )9 (1 F)] ay+

+ (1= gyt )%2—2(1—F*)%u +%%h(l_r;l)g_§'

h « { 0%v gh o°v
L =—WN-Ty | — [+(1- 1-T
22(M) A( 22(8y2] ( ﬂlﬂz);t ( )6x2

+(1—ﬂ1#2)ia_h(1_r )8v il (1— 22)2\;,

220X
Loz (w) = hU(Xg/Zl(l F21) ZA(l Fzz)}%+%h{§—A(1—F;2)+%%(1—F;1)N}y

L24<w>:h{i(1_r;2)%az_w+[%(l ) ) Lo

. +
oy oy OX OXoy

oX Aoy
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+a—h/15A(1 rll)g—;‘(+%(1 ylyz);t?’ag(l F)Z;
+8—2(1—ﬂ1ﬂ2)/1359(1—r*)a*u+%h%3,5(1—r;1)%i,

oy
4
A i(y (1_1—;2):1%

Lao (V)= {/lz@zAkx (1— I )+

+Z—2ﬂ2/125A(1—F52)%+%C(1—ﬂ1ﬂ2)/1259(1—r*)%+
+2h(1 ﬂlﬂ2)f1259(1 F)% %%(1 Fzzgvy
L33(W):hS{A(l—Ffl)g%v+{4(1—,%#2)9(1—F*)+/12A(1—Ff2) %(1 1“21)}12 8a4ay

+_(1‘F52)Z4y—\2v} 3[2h[22j hZth}{ Al 1“11)—+2,2y2A( )0 }

+6h26_:{ (1 r11)67+[ﬂ2A(1 r12)+2(1 1145 )9 (1 r) ai;y }+

1 6h? ah{A(l 1"22)1 6"" {'Zl(l T )+ 200 sy gL - r)}ﬁ aisay}+

8h 2 azh 1 * .4 o%w 7 * \ .2 o%w
+32h— | +h“"— || =1-T —+221-T — |+

2
+12 2n NN 2 O (1-ﬂ1y2)g(1—r*
OX oy OXoy OXoy

4,2
_12h{Akf(1—F1*1)+ /Izkxky[yzA(l—Ffz)+ %(1—@*1)} +Ty(1—r§2)}w

[k A(l rﬂ)m kyyzA(l rlz)}/v 2;{%“’(1@2) s ﬂZ;AtlkX (1r§1)}w,

2
L34(u,v,w):%lkxA(l1"1*1)+/I A (11";1)}( ox
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4 2
%szxw(lr;2)+%kv(1r;2)](%j }
) ow

125_9‘:("{h{A(1r1*1{/152$ gx;vzz J Al -5 )+ a1 o

+[ﬂzA(l_rfz)Jr(1—ﬂ1#2)9(1_r*)](/125 ;(avy o Z\;Vgxa\,;] (11)

+ (- st )gli-T )[/135;—“ gz%v%]}_

az au_ 1wy’ o\ 250V 2 (ow)

Jeali-r ) 22yl )}N} 12%%{% b-13, )[/145 2yv = g\;\/ 232/ J

4

TR —

OXoy OX OXoy

2 2
Pl “1(1 r21) BsM A (a""j +
6’y A oX 2\ oX

2 4
e e LR R TR

o%u ow o%w o%v oW 9w
0 PRy [ tad 1— R i +
( ) +( ﬂluz)g( )[ 2 j}

2\ oy
ou ov zawaw}r

o°w *\ .3 2
—249 Wt 1) B My 25N 4 2N W
oxdy (- s ok )( % oy

B

oh oh aowow oh|1( .\ 24 ew) 22 (ow
(25 R Sl 2l

2 2
_ 3”—)\/@(%’) is the static critical load; @ = \/72'2\/ E E,hGPy /(pb4) s
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P w2
the frequency of the fundamental tone of oscillations; P; = cr = A= %
2

JEE,(b/he P 30— ausr)’

The system of equations (6), (11) with the corresponding boundary and initial conditions describes
the motion of a viscous-elastic orthotropic shallow shell of variable thickness under a periodic load

P(t) =P, + P, cos(Bt) .
In calculations, the singular Koltunov-Rzhanitsin kernels [27] are used as relaxation kernels:

r(t)= Ae Pt (0<a <1), Iy(t)= A 't (0< oy <1) (12)

1
Let the shell thickness change following the law h(X) :§h0(1+a*X), i.e., it leads to a linear

increase in the shell thickness (Fig.2).

*
Here, a is the parameter characterizing the thickness variability; ho is the shell thickness

*
correspondingto o =0.

h ] h
0048 1 0,06

0024 i 0,03
0 . [
0,024 | 0,03

L1710 R S S U S S P — N S 0,06 :
— —
0 oa 02 0z o4 0s 0g or 0g 09 X o 01 0.2 03 o4 05 0g o7 08 09 x

a) b)

Figure 2. Change in the shell thickness depending on the value

of parameter a’:
a)a =02;b)a" =05

The solution to the obtained IDE system that satisfies the boundary conditions of the problem is
sought with respect to the displacements u and v, and the deflection w in the form

U(X,y,t):% %unm(t)%m(xly)’ V(X’y’t):% %Vnm(t)(”nm(xly)

n=1 m=1 n=1 m=1
N M
WX, Y,t) =3 3 W (Ehm (X, )., (13)
n=1 m=1

where Upn =unm(t), Vam =vnm(t), Wim =an(t) - unknown functions of time; ¢nm(x, y),

(pnm(x, y), vom(%y), N=12,.,N; m=12,..,M - coordinate functions that satisfy the given
boundary conditions of the problem.

Substituting (13) into the system of equations (6), (11) and performing the Bubnov-Galerkin
procedure, we obtain the following system of basic resolving nonlinear IDEs:

nZ_:mZ_:akInm nm 771{2 Z{[(l F11>j1klnm (1 F}jZkInm}Jnm
+[(1‘Ffz)dsk|nm ( )d4k|nm}/ (1 F12)de|<|nm}/‘/nm}

%_ %}_ [(1—Ff1)d7klnmij +(1—rf2)d8k|nmij + (1‘F*)dgk|nmij KanWij — WonmWoij )}=0’
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gll %lbklnm nm ~ 112 {% '\ZA:{[(]' F;cl}elklnm"'(:I'_F*%Zklnmljnm"'

n=l m=1

+[(1—F;2}93klnm 1 r )E4k|nm}/nm+(1 le skinm T (1 Fzz}fekmm}'\/nm} (14)

+ Z Z [(1 r22 7klnmu—|'(1 r21%8klnmu ( )99klnmukwnmwlj WOanOij)}ZO'

ni=lm,j=1

M

N M
.o 2
2 2 CanmWom 732 22 Pidnm (1_ 2 inm COS@t)an -
n=1 m=1 n=1 m=1

- ’73{%1 m%{ [(1‘ rl*l)flklnm + (1‘ Fgl)fZKInm an + [(1‘ r1*2 )fSkInm + (1‘ FEZ )f4klnm }/nm +
+[F1*1 fanm + 112 fornm *+ 122 Fimm *+ 121 fatanm + T Toanm }‘NOnm }—

_’73{% % an{[(l_rfl)ﬁkmmij +(1_r;1)§2k|nmij +(1_r*)§3klnmij]‘1ij +

ni=lm,j=1

+[(1— I )§4k|nmij + (1— I )'fSkInmij + (1_ F*)':lenmij }/ij }+
+[(:|-_Ffl)f7klnmij +(1_Ffz)f8k|nmij+(1‘F;2)59k|nmij +(1_F;1)§10klnmij KWij — Wojj )}*

N M
+n|Z_1 mZJ:_l{(l Fll)glklnmurs (1 F12)92k|nm|]rs (1 F21)93k|nm”rs (1 F22)94k|nm|jrs}<wnm IJ_WOanOij)+

+ % % an{(l 1Hll)95klnmljrs (1 1H12)gGkInm|Jrs (1 r22)97klnm|]rs

n,i,r=1m,j,s=1

* * 4
+(1_F21)98klnmijrs +(1_F )ggklnmijrs }(Wijwrs — Woij Wors } 12075(1— 10 )2 0
v

Unm (O)ZUOnm' unm(O)ZUOnm’ Vim (O):VOnm .nm(o) Vonm
Wi (0) = Wopnm, W (0) = Wonm. k =1,2,...,N; 1=1,2,...M ,

where the constant coefficients included in this system are related to coordinate functions and their
derivatives and have the following form:

Ay inm = ”h¢nmﬂ<l dxdy ;

11
dlklnm = ”A(h¢r’{m,xx + h>’<¢r,1m,x )¢kl dXdy ;
00

11
Aopinm = J [ Q= 1115 )92 (h¢r'{m,yy + h§,¢r’]m,y)¢k,dxdy;
00
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11
3o = ”ﬂZAﬂ(hgpr’;m,xy + h>’(§0;1m,y )¢k| dxdy ;
00

11
dgitom = ”(1_ Mt )g/i(h(Pgm,xy + hgﬁ”;lm,x )¢kl dxdy;
00

11 Ak
5k|nm ” (h ‘//nm x W nm )¢kl dxdy;

Lok, Mk,
deinm = ” y§ 2 (h Wamx T D nm )¢kldXdyi

ll A 1 ! ! !
d7k|nm|] ” 176 (h‘//nm Vi xx +§hx‘//nm,x‘//ij,x P dxdy;

oA ) 1., , ,
8klnm|J ”,U ( nm,y'//ij,xy+Ehx‘//nm,y‘r’/ij,yj¢k|dxdy;

11

d9k|nm|J gg(l H )g

ﬂ ’ n 1 14 1 1 ’ .
g(h Yom,yWij,xy T h YamxVij,yy T hy‘//nm,xl//ij,y)¢kl dxdy ;

Binm = f J h@mey dxdy ;
€1kinm = I I ~ (h¢nm xy T Ny B x )<0k| dxdy ;

11
1- "o
e2klnm = gg%(h¢nm Xy + hx¢nm,y )’pdedy ;

11 1
€3kinm = ggX(h(pr’;m,yy +hy (pnm y)@kl dxdy ;

€4kinm = i i (1_'L;+ﬂ2)g (h@fn s + PePhm. Jpwacxdly
€skinm = ﬁ E’z(gi (h Wam,y + hyWnm )(Dkl dxdy ; €gyinm = —ii;—l(h Yom,y +hy¥nm )§0k| dxdy ;
€7 kinmij :iii(h YamyWiiy T o h'l//nm Wi, yj(Pdedy
€skinmij = ”/12&( W om Vi xy +%h'yl//ﬁm,x%//i'j,x]€0kld><dyi
Cokinmij = ﬁw(h Wamx¥iixy W amyWii o+ W nm x¥ii, y)‘PkldXdy

225
11

Cuinm = g(]; hy i dxdy ;
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3
11x ,Ul y

) 11 4
f3nm = 12J I A1 Ak Ny i dxdy ;- 40 = 12[ f

g h(P;lm,y‘//kl dxdy ;

11
f5k|nm = J‘IA(hS‘//rll\rTQ,xxxx + 3[2h(h;< )2 + hzh;x}//r’;m XX +6h? hx‘//r’1”m xxx"':|-2k>%h Wom Wiadxdy ;

11
f6|<|nm = ”,UZAAZ (hsl//r%,xxyy + 3[2h(h;< )2 + hzh;zx }/’gm,yy +6|’]2h;<‘//;;lm,xyy"’12kxkyh ¥ nm )//kl dxdy ;

7Hnm

8Hnm

jj L ( W3y oy +60ZNp +3[2h(h'y)2 +h2hgy}/n'm,yy 12k 2y by dxdy
00

T 0%,y 61200y + 3200 020, D 412K, e iy

¥ nm, xxyy y¥ nm, xxy

"

11
foinm = “.(1_/*‘1/“2 )922 (4h3'//r|1¥,xxyy +:I-ZI']Zh;(l//nm,xyy +12h%h; ‘//;;’m xxy T
0
+12lohhghy +h2h b o gdxdy
flklnmlj 12J‘J‘A§A(h Ynm x¢u xx ¥ im X¢Ij x NV A IJ,X )//kl dxdy ;

235 , ,
ﬂl (h ‘//nm y¢|] xy T h ‘//nm y¢u xt h'//nm,yy¢ij,x )/’kl dxdy;

52k|nmlj = 12”

11
983klnmij = 12££(1_ V) )9135(h '//Flm,x¢i,j’,yy +hy l/’nm y¢u y T hwhm, y¢|j xy T

+ h;(‘//nm y¢|j y t 2hyom xy¢lj,y »’kl dxdy;

11245
§4klnmlj 12” (h Wom, y(”u yy T hgll//r’1m,y§0i’j,y + h‘//;;m,yygpi’j,y )//kl dxdy ;

11
2 ! " ! ! ! /4 !
Sgskmmij = 12”#21 5A(h Wi x®@ij.xy ¥ nmx®@ij,y + DV am x®ij.y )Vkl dxdy
00 .

11
2 ' " '
§6klnmij 212”(1—;11/,12 )g/ﬂL §(h W nm,xPij,xy +h l//nm x(”u x Thvom y(plj xx T
00

+ N iy @i x + 200 iy @ x WXy

11
§7klnmij = _12” kxA(h YamxViix W am i + N am ol )//kl dxdy ;
00
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§8klnmlj 12”12/12k A(h Yam x‘//lj x + ¥ im xWij t h ‘//F;m,xx'//ij )//kl dxdy;

11 2%k
é:gkmmij 12,” (h l//nm yl//u y + hyl//nm yl//u +h l//nm yyl//lj )//kl dXdy

1112

,u Ky
glOkInmij 12” :

(h Wam,yWij,y + WV am yWi + NV am,yw¥ii )/’kl dxdy;

11 11
Oainmij = 6] | KxAN W hm v x¥ia XAy : Qo = 6] [ A% ok ANy oy Wi Wi dxdly ;
00 00

117 Zulky 11 2,
93Kinmij = 6” hyom x‘//u xWiadxdy ; 94kinmij = 6” h'//nm yl//” yl//|(|dXdy

11
1 1A 14 1 ’ ’ ’ ! 1 14 ! 1A
gSkInmijrs :12”A(h‘//nm,x‘//ij,x‘/’rs,xx +Ehx‘//nm,x‘//ij,x§//rs,x +Eh '//nm,xxl//ij,x‘//rs,xj'//kl dxdy ;
00

11
2 ' ' " 1 ooy ; ' 1 " ' '
Dekinmijrs = 12”,“2Al (h Ym x¥ij,y¥rs,xy +Ehxl//nm,x‘//ij,y‘//rs,y4‘5h V/nm,xx‘//ij,y‘//rs,yjl//kl dxdy ;
00
11 44
97kinmijrs :12HX(h '//rrlm,yl//i'j,yWFs,yy +— hyl//nm y‘//u yWrs yt 5 5 hl//nm yy‘//u y‘//rs y]l//kl dxdy ;
00
ﬂll ( ' ’ " [ ’ ' " / ' )// .
g8klnmijrs :12”_2A 2h‘/’nm,y'%’ij,x‘/’rs,xy + hy‘/’nm,yl//ij,x'//rs,x+ h‘//nm,yy‘//ij,x'//rs,x K dxdy ;
00

11
2 ' ’ " ’ ’ "
Yokinmijrs :12”(1_ﬂlﬂ2 )g/I (h Yoam xVij,y¥rs,xy + h Yom,xVij,xVrs,yy T
00

+hy ‘//nm x'//u Vs, y Tt hwnm, y'//u Vs xy T hw i, y‘//u y'//rs xx T
11
W iy Wi W s,y + 2D i Wi W fs.y Wi dxay s G =0 Jyigdxdy ;
00

9 2,2 * . _ 272'212 pEInm S
Piinm = f5k|nm + f6klnm + f7klnm + f8klnm + f9k|nm — 474" PranmO0 5 Hianm = 2 1
klnm

System (14) was integrated using a numerical method based on the use of quadrature formulas [28].
Assuming harmonic oscillations, system (14) in integral form is obtained by integrating it twice over time t:

N M N M _ tr
z z aklnmunm = Z zaklnm(UOnm +Uonm )+771”{Z Z {[(1 lﬂll}jlklnm (1 r )jzklnm}“'nm
n=1l m=1 n=1l m=1 00 n=1 m=1

+[(1‘Ffz)d3klnm + (1‘r*)d4k|nm }/nm + [1‘Ffl)d5k|nm + (1‘rfz)d6k|nm }’Vnm }+

+ Z Z [(1 1—‘11)j7klnmlj (1 F12)18klnmlj (1 r }ijlnmuKanle WOanOU)}deS

ni=lm,j=1
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% %bklnm Vim = % %bklnm(VOnm +V0nm )"'772,:[3{% % {[(l_rgl)glklnm +(1_F*)32k|nanm +

n=l m=1 n=l m=1 n=l m=1
+ [(1_F22 )%Sklnm + (1_r*>%4klnm }’nm + (1_F;1)55klnm + (1_F;2 }%klnm }Nnm }"’ (15)
+ %1 %1[(1‘1?2 )97k|nmij +(1‘F;1)Esklnmij +(1‘F*)e9klnmu IanWu ~ WonmWojj )}dfds-
ni=lm,j=
N M N M tr
> 2 CrinmWnm = > chlnm(WOnm + Wopmt ) 773”{2 > pklnm(l 2 fnm COS@t) Wom —
n=l m=1 n=l m=1 00 (n=1l m=1
- n% m%l{ [(:l'_rfl)flklnm + (1_F;1)f2klnm}“lnm + [(1_F1*2)f3klnm +(1_r;2)f4klnm }/nm +

[ * * * * * }/\/ }
+ r11 f5k|nm + r12 f6klnm + 1ﬂ22 f7k|nm + F21 f8k|nm +I f9klnm Onm |~

_g %an{[(l 1Hll)élklnmu (1 1H21)§2klnmu (1 r )'§3klnm|11‘llj

n,i=lm

+[(1—F;2 )§4k|nmij + (1—F1*2 )fskmmij + (1_F*)56klnmij }/ij +
+[(1_Ffl)f7klnmij +(1_F1*2)58klnmij+(:I'_F;2)§9klnmij +(1‘F;1)§10klnmij kWij — Woij )}+

N M * " % *
Z: Zj: {(1_ rll)glklnmijrs + (1‘ I, )gzklnmijrs + (1‘ I 21)gSkInmijrs+ (1_ 2 )g4klnmijrs }(anWij = WonmWojj )+

N M
+ 21 z 1an{(1 1H11)95klnmljrs (1 1H12)gGkInm|Jrs (1 r22)97klnm|]rs
n,i,r=1m,j,s=

+(1_ Fgl)gSklnmijrs + (1_ r*)99klnmijrs }(Wij Wrs = Woij Wors )_12773 (L s ) }d ads .

By the formula for replacing the double integral with a single integral the system (15) is given in the
following form:

% zaklnmunm % zaklnm(UOnm‘*uOnmt)‘mlj.(t T){Z Z{[(l Fll}jlklnm (1 F}jZklnm]'lnm+

n=l m=1 n=l m=1 n=l m=1

+[(1‘Ffz)(13klnm + (1‘r*)d4k|nm }/nm + (1‘Ffl)d5k|nm + (1‘rfz)d6k|nm }’Vnm }+

+ z Z [(1 1ﬂllb?klnmlj (1 1—‘12)18klnm|] (1 r )%klnmljkwnmwlj WOanOIJ)}d
'k,

ni=lm,j=1
N M M t N M .
Z Z bklnm nm — z Zbklnm(vonm +V0nm )+772,[(t_7){z Z {[(1_F21%1klnm +(1—F klnanm +
0

n=1l m=1 n=l m=1 n=l m=1
(1_F21)95k|nm + (1_F22 }%kmm }Nnm }+ (16)

+[(1_ Iy )Esklnm + (1‘ F*)E4k|nm }/nm +
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N M * * *
+ Zl Zl[(l‘r22)57klnmij +(1‘F21)38k|nmij +(1‘F }99k|nmij kanWij ~ Wonm Woij )}dT'
ni=lm, j=
N M N M ' t NOM
Z Z Cklannm = Z chlnm (WOnm +W0nmt)_773j(t -7 Z Z Pkinm (1_2/“klnm COS@t)an -
n=l m=1 n=1 m=1 0 n=1 m=1
N M * * * *
- El mz_l{ [(]'_Fll)flklnm + (1‘r21)f2k|nanm + [(1_r12)f3klnm +(1_F22)f4klnm }/nm T

* * * * *
+[F11 forinm * T12 Fokinm 122 F7inm * T2 famnm + T fokinm }NOnm }‘

- % % an{[(l_rfl)flklnmij +(1_F;1)§2k|nmij +(1_F*)§3klnmij]‘1ij +

n,i=lm,j=1

+[(1— I )§4k|nmij + (1— I )fskmmij + (1_ r*)§6klnmij }"ij +

+ [(1 - Ffl)rf7k|nmij + (1 -1 )§8k|nmij + (1 -T2 )§9klnmij t (1 - F;1)§10klnmij k""ij — Wojj )}+

N M * * * *
+ 21 Zl{(l_rll)glklnmijrs+(1_F12)92klnmijrs+(1_r21)93klnmijrs+(1_r22)g4klnmijrs}<wnmwij _W0an0i1)+
ni=l m, j=
N M * * *
+ _Zl 2 1an{(1_rll)95klnmijrs+(1_F12)96klnmijrs+(1_r22)g7k|nmiir5+
nir=lm,j,s=

+(1_ r;l)98klnmijrs + (1_ r )ggklnmijrs }(Wij Wrs — Woij Wors )_12773 (L a1 ) g }d 7,

Unm (O)ZUOnmv lJnm(o):uOnm’ Vim (O)ZVOnm’ vnm(o):VOnmv
Wi (0) = Wonm» Wom(0) = Wionm, k =1,2,...,N; 1=12,..,M .

Assuming that t=t;, t; =iAt,i=12,... (where At is the integration step) and replacing the
integrals with quadrature trapezoidal formulas to calculate the unknowns Wj,m :Winm(ti)’

Uinm = Yinm (ti) and Vinm = Vinm (ti ) a system of recurrent formulas is obtained.

Based on the developed algorithm, a program was compiled in the Delphi algorithmic language.

3. Results and Discussion

The results of calculations for various physical and geometric parameters are shown in graphs in
Fig. 3—7. Numerical results are compared to the ones available in the literature.

The effect of orthotropic properties of the material on the behavior of a shell was studied (Fig. 3). As
seen from the figure, an increase in parameter A that determines the degree of anisotropy (curve 1 -
A=1; curve 2 - A=1.5; curve 3 - A=2.0) leads to an increase in the oscillation amplitude and a phase
shift to the left.
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0 ; o s p = p 35 !
Figure 3. Dependence of the deflection vs time for

A =16 =25k, =10;k, =10;9=0; py =0; p, =0; a =050=11

A= Aij =0.05,i, j=12;

A=1(1);1.5(2); 2.0 (2)

Figure 4 shows the results obtained from different theories. Here, curve 1 corresponds to the case
when the shell material is elastic, curve 2 - to the case when the viscosity of the material is taken into

account in the direction of shear (A =0.05, Aij =0,1,]= 1,2), and curve 3 - to the case when the viscosity

is taken into account in all directions (A = Aij =0.05,1, j :1,2).

W - - - - -
! ! ! ! n i1

Figure 4. Dependence of the deflection vs time for
A=1 8=25 k =10; k, =10, q=0; p, =0; p, =0; o' =05 @=11 A=1
The results obtained confirm that viscous-elastic properties of the material should be considered not
only in the shear direction but also in other directions.
The influence of the shell thickness on its behavior is studied. Figure 5 shows the results obtained

for various values of the thickness change parameter o *. It can be seen that with an increase in this
parameter, the oscillation amplitude increases. In particular, the results obtained for a shallow shell of

constant thickness (o™ = 0) coincide with the results obtained in [29].
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Fig.5. Dependence of the deflection vs time for
A=16 =25k, =10;k, =10;q=0; p, =0; py =0;© =1.1;
A=A;=0.051,j=12A=1
=0 (1); 0.5 (2); 0.8 (3)

Figure 6 shows the results obtained for various values of the curvature parameter kX. An increase
in this parameter leads to an increase in the amplitude of oscillations.

Figure 6. Dependence of the deflection vs time for
A=16=25k,=10;q=0; p, =0; py =0;c’ =0.5;0 =11,
A= Aij =0.051,j=12,A=1
K, =10 (1); 15 (2); 20 (3)

Figure 7 shows the results obtained for various values of the frequency of the external periodic load
® . An increase in this parameter leads to an increase in the amplitude of oscillations.
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-0.01

Figure 7. Dependence of the deflection vs time for
A =15 = 25k, =10;k, =10;q=0; p, =0; p, =0;&’ =0.5;
A= Aij =0.051,j=12,A=1
0=1.1(1);1.3(2);15(Q3)

4. Conclusion

A mathematical model, method, and computer program were developed to estimate parametric
oscillations of a viscous-elastic orthotropic shallow shell of variable thickness, taking into account geometric
nonlinearity under periodic loads.

The dynamic stability of a viscous-elastic orthotropic shallow shell of variable thickness was
described by a nonlinear system of IDEs.

The application of Galerkin method with the discretization of spatial variables at each time point
reduces the problem of dynamic stability of a viscous-elastic orthotropic shallow shell of variable thickness
to solving a non-decaying system of ordinary nonlinear IDEs with weakly singular kernels with variable
coefficients.

The impact on the amplitude-time characteristics and the SSS of a change in the physical-mechanical
and geometric parameters of the shell material was estimated.

The method proposed in this article can be used for various types of thin-wall structures (plates,
panels, and shells of variable thickness).
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