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Abstract. The study object is a three-dimensional triangular prism finite element based on piecewise 
constant approximations of stresses. The use of such a finite element makes it possible to obtain more 
accurate stress values, especially at the boundaries of the region and in the stress concentration zones. 
The solution of the volume theory elasticity problem was obtained on the basis of the additional energy 
functional and the possible displacements principle. With the help of the possible displacement principle, 
algebraic equilibrium equations of finite element grid nodes are formed. The resulting equilibrium equations 
sum up with the additional energy of the system using the Lagrange multiplier method. In this case, the 
stresses are determined directly at the nodal points, and not at the finite element centers. The stress fields 
are continuous along finite element boundaries and discontinuous inside them. The paper shows that the 
displacements obtained by the proposed method, when refining the finite elements mesh, tend to exact 
values from above. As a test, the article provides calculations for bending plates and beams. As the test 
problems solutions showed, the proposed finite elements allow obtaining more accurate stress values 
compared to traditional finite elements based on stress approximation. Comparison of the stresses obtained 
by the proposed method with analytical solutions shows the high accuracy of the proposed method. 
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1. Introduction 
The finite element method is the most popular method for solving various structural mechanics 

problems. Most of the developed finite elements are based on the displacements fields approximations. In 
this case, the stresses are determined through the derivatives of the displacement functions, are 
discontinuous along the finite element boundaries, and are determined for the finite element centers. 
Stresses are the most important characteristics, so it is necessary to determine them with greater accuracy. 
Therefore, development of the finite elements based on the stresses approximations is of relevance, as it 
will improve their calculation accuracy. 

To date, numerous variants of finite elements have been developed for the calculation of rod 
systems, the elasticity theory plane problems, bending plates [1–3], shells and volume problems [4–7]. The 
papers [8–10] propose finite elements based on the stresses approximations. The solution is built on the 
basis of the additional energy functional, which is expanded by including the algebraic equilibrium equations 
of nodes in it using the Lagrange multipliers method [11, 12]. This approach makes it possible to more 
accurately determine the stress values, including stresses at nodal points. When solving such problems as 
the calculation of nodal connections of different sizes elements, the calculation of elements from dissimilar 
materials, the calculation of structures with a stepwise change in cross sections, a more accurate 
determination of stresses becomes essential. In this case, as a rule, maximum stresses occur at the subject 
area boundaries. To model such structures, it is necessary to use volumetric finite elements. In works [13–
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17] for the stress-strain state analysis of reinforced concrete beams, columns and their connections, 
volumetric finite elements are used. In article [18] for the calculation of complex volumetric steel assemblies, 
variational formulations based on displacements and stresses are considered and the corresponding finite 
element discretization strategies are selected, giving, respectively, the upper and lower exact solution 
estimates. The proposed scheme is illustrated on the design of the torque transmission unit. To solve 
problems of plane elasticity theory, bending of plates and shells, a hybrid finite element formulations based 
on approximations of both displacements and stresses were used in articles [19–21]. Paper [21] notes that 
special hybrid elements are used to model the elements connection that do not lie in the same plane. These 
elements include the so-called plate elements and three-dimensional solid elements designed for the 
analysis of thin plates and shells. In articles [22, 23] for thermo-mechanical analysis of multilayer plates 
and shells the authors also used volumetric finite elements. It is noted that the proposed finite volumetric 
finite elements allow using only a few nodes in the thickness direction to obtain results with satisfactory 
accuracy. Article [24] investigates the behavior of steel-wood composite joints with bolted connectors 
embedded in grout pockets using 3D continuum finite element models. Finite element models are used to 
conduct a parametric study that investigates the effect of compressive strength of cement slurry, yield 
strength and shear size of bolted connectors, slurry size, pockets and the thickness of the steel profile 
flange on slippage characteristics under load, operational rigidity, peak load-bearing capacity and joint 
failure modes. To simulate the stress-strain state of bolted joints, various volumetric finite elements are 
widely used [25–28]. The volumetric finite elements are successfully used for modeling concrete and fiber-
reinforced concrete structures [29–31]. Article [30] is aimed at evaluating the modulus of elasticity and 
Poisson's ratio of fiber-reinforced concrete using finite element modeling. A theoretical model for predicting 
the elastic modulus and Poisson's ratio of fiber-reinforced concrete was created using homogenization 
theory. To study the effect of local corrosion on the bearing capacity of long columns of round reinforced 
concrete steel pipes under eccentric compression, a numerical model was created using volumetric finite 
elements [32]. An eight-node 3d solid element of linear reduced integration is adopted for both the outer 
steel tube and the core concrete. The mesh element size is one tenth of the section diameter. The various 
volumetric finite elements are also being developed for the composite structures analysis by the finite 
element method [33, 34]. Various mixed formulations of the finite element method based on the additional 
energy and Reissner's functionals are developed in articles [35–38] to solve structural mechanics problems. 

The review of scientific articles shows that the development and application of volumetric finite 
elements for the calculation of nodal connections and complex composite structures is relevant. Most of 
the finite elements currently used for this purpose are based on displacement approximations. This work 
aims to develop a volumetric triangular prism finite element based on stress approximation. The stresses 
obtained by the proposed method will be compared with analytical solutions and stresses calculated by the 
finite element method based on displacement approximation. 

2. Methods 
The solution to the bulk theory elasticity problem will be built based on the additional energy 

functional: 

( ) ( ) ( )2 2 2 2 2 21 1 1 .
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E  is the material elastic modulus; ν  is Poisson's ratio, ( )2 1 .G E= +µ  We write the functional 
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Fig. 1 shows a triangular prism finite element and six marked regions with constant stresses. In each 
region, the stresses are constant and equal to the stresses in the corresponding finite element node. 

 
Figure 1. Triangular prism finite element. 
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Figure 2. a) stresses distribution; b) triangular coordinate. 
The red lines restrict the prism region with stresses, which equal the stresses on node 1. A1, A2, A3 

are the squares of prism bottoms and covers. Let us denote the nodal unknown stresses vector, in a global 
coordinate system, as 

( ), , , , , , , .T
node k x k y k z k xy k xz k yz k= σ σ σ τ τ τσ                               (3) 

Vector of finite element unknown stresses is 

( ), ,1 ,2 ,6 .T T T T
el k node node node= σ σ σ σ                                        (4) 

To simplify the notation, let us introduce unit step functions and diagonal matrices 
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Then the approximation matrix of stresses in the finite element volume will have the simple form 
(Fig. 1b): 

[ ]1 2 6 ,, .k k el k= =Z H H H Z σ σ                                     (6) 

Using (4)–(6), we express the finite element additional energy in the following form: 

( )1
, , .

k

T T
k el k k k k el kV dV−Π = ∫ Z E Zσ σ                                        (7) 
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The pliability matrix of the finite element is 

1 .
k

T
k k k kV dV−= ∫D Z E Z                                                     (8) 

The matrix has a simple block-diagonal form. Global matrix D  of the whole system is formed from 
local finite elements matrices. Functional (1) of the whole system: 

1 .
2

T
V VΠ = Dσ σ                                                             (9) 

Vσ  is a global vector of the unknown stresses of the system. 

Global matrix D  has a block-diagonal form: 
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n  is number of system nodes; ,i kV  and k  are the volume and index of finite elements adjoining node .i  
1

k
−E  is material stiffness matrix of finite element .k  

Denote the nodal unknown stresses vector, in local coordinate system (Fig. 3), as 

( ), , , , , , , .T
node k x k y k z k xy k xz k yz k= σ σ σ τ τ τσ                              (11) 
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Figure 3. Local coordinate system. 
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Figure 4. Integration of a triangular coordinate. 
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In accordance with the minimum additional energy principle, the stress functions must satisfy the 
equilibrium equations. Therefore, using the possible displacements principle, we will obtain algebraic 
equations for the nodes equilibrium along the coordinate axes. As a result, we will have the problem of 
minimizing the additional energy functional in the presence of constraints in the equations system form. We 
will solve such problem by the Lagrange multipliers method. It should be noted, that such functional is not 
a mixed one, in which both stress and displacement approximations are used simultaneously. The 
proposed solution only uses the approximations of possible displacement when we obtain the equilibrium 
equations. As known, approximations of possible displacements can be any functions that satisfy the 
boundary kinematic conditions. 

To obtain the equilibrium equations, we give possible node displacements along the local coordinate 
axes (Fig. 3): 
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Parameters 0,u  0,v  0w  are introduced for the convenience of the transition to the global coordinate 
system and below are taken equal to 1. Possible displacements of node i  along the x  axis give the 
following deformations of the finite elements adjacent to this node: 
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eA  is bottom area of a triangular prism. The possible finite element strain energy 
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Using (14), let us get 
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The first two terms integration in (16) does not cause difficulties. To calculate the third term, it is 
necessary to integrate the linear function over triangular areas. Fig. 2b shows graphs of stress changes 
and a linear function over the prism base area. In Fig. 2, points ,a  ,b  d  bisect the corresponding sides. 

Point c has triangular coordinates 1/ 3i j kL L L= = = . Function iL  integral over the area 1
eA  is equal to 

the volume of the figure .acbia c b i′ ′ ′ ′  This figure can be divided into two equal parts by the plane сс ii′ ′  
(Fig. 4). The triangles areas aci  and cbi  are equal. In Fig. 4, lines с n′  and с m′  are parallel to the base. 
The acia c i′ ′ ′  volume can be represented as the sum of a triangular prism acimc n′  volume and a pyramid 
c ma ni′ ′ ′  volume. Then 
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Product .
3

eAh mn⋅ =  Function iL  integral over the area 2
eA  is equal to the sum of the pyramid’s 

volumes jdcc′  and jcc bb′ ′ . Let us get 
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In (18), 1,h  2h  are the heights lowered from point j  to cd  and ,cb  respectively. Considering (17) 
and (18), we get 
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If ( ) ( ) ( )3 3 22,iji j i j i j k= ∨ = + ∨ = − =  else 7.ijk =  The strain energy of finite element with 

a node possible displacement along the Y and Z axes is written by analogy: 
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Expression (19)–(21) let us write in matrix form: 

, 0

, 0

0,

0 0
, 0 0 .

0 0

e
i x

e e e e e e
i i y i i i

e
i z

U u
U v

wU

 δ      = δ = =   
    δ  

U u L uδ δ σ δ                                   (22) 

Let us express the stresses and possible displacements ,eσ  e
iuδ  in the local coordinate system in 

terms of the corresponding parameters ,eσ  1e
i =uδ  in the global system: 

, .e e e e
i u iσ= =C u C uσ σ δ δ                                                             (23) 

The transition matrices ,σC  uC  have a standard form. Substituting (23) into (22), we get 

T, .e e e e e e
i i i i u i σ= =U u L L C L Cδ δ σ                                                        (24) 

The external forces potential with the node possible displacements in the global coordinate system 
will have the following form: 

.e e e
i i i=V u Pδ δ                                                                   (25) 

From matrices e
iL  of all finite elements nodes "equilibrium" matrix L  for all system is formed. Matrix 

L  rows number is equal to the number of system nodes possible displacements, and the columns number 
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is equal to the the total number of nodal unknown stresses. The matrix has a band structure of non-zero 

elements. Global load vector P  is formed from vectors e
iP  of all finite elements nodes. 

Let us take the algebraic equations system for the equilibrium of nodes in matrix form: 

0.v + =L Pσ                                                                       (26) 

vσ  is the vector of the node’s stresses for the whole system. Using the Lagrange multipliers method, 
we add the equilibrium equations to functional (9): 

( )1 min.
2

T T
V V VΠ = + + →D w L Pσ σ σ                                         (27) 

w  is the nodes displacements vector. 

Equating the functional derivatives with respect to Vσ  and w  to zero, we obtain the system of 
equations: 

0, 0.T
V V+ = + =D w L L Pσ σ                                               (28) 

We express vector Vσ  from the first matrix equation and put it into the second one. Then we get 

1 1, , .T T
V

− −= − = − =L D w K L D L Kw Pσ                                        (29) 

K  is the whole system stiffness matrix. That matrix also has a band structure of the non-zero 
elements. Matrix D  has a block-diagonal structure and is inversed analytically. When calculating product 

1 ,T −L D L  the band structure of non-zero elements of matrix L  is taken into account. Solving the equations 
system, we determine the nodal displacements, and then calculate the nodal stresses (24). Thus, the stress 
fields are continuous along element boundaries and discontinuous inside ones. On the contrary, when using 
the finite element method based on the displacement approximations, the stress fields are continuous 
inside the finite elements and discontinuous along their boundaries. 

3. Results and Discussions 
To test the method, a pinched beam (Fig. 5) and a hinged plate (Fig. 6) calculations were performed. 

Such tasks were chosen because there are analytical solutions for them. 

 
Figure 5. Finite element model of a pinched beam. 

 
Figure 6. Finite element model of a hinged plate (quarter). 

The beam length is 6 meters, the cross-section dimensions are 1 by 1 meter. The material elasticity 
modulus is 106 kN/m2. A uniformly distributed vertical load q  = 1 kN/m2 is applied to the cross section at 
the beam free end. Options for the beam cross section dividing into the finite elements are shown in Fig. 7. 
The beam length was divided into six (for schemes in Fig. 7a and Fig. 7b) or twelve (for scheme in Fig. 7c) 
finite elements. The square hinged plate measures 6 by 6 meters and is 0.4 meters thick. The load on the 
plate is evenly distributed q  = 1 kN/m2. Poisson's ratio is µ  = 0.3.  
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According to the thickness, the plate is divided into 4 finite elements for variants in Fig. 9a, Fig. 9b 
and into 6 elements for the variant in Fig. 9c. The calculation results in the figures and the table, obtained 
by the proposed method, are indicated as FEM-S, and the results obtained by LIRA-SAPR program, which 
use the traditional finite elements, are indicated as FEM-D. 

An analytical solution for the hinged plate was obtained in [39]. According to it, the displacement and 
the bending moment in the plate center are determined by the following expressions: 

( )
4

2
3 2

0.004960.0479 , .
12 1

qaM qa w
Eh

= =
−µ

                                                 (30) 

The analytical values of the plate center displacement and the outer fiber stress are given in Table 1. 
An analytical solution for the cantilever beam is easily obtained based on Kirchhoff's beam bending theory. 

   
a) b) c) 

Figure 7. Dividing the beam cross section into finite elements. 
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Figure 8. Displacements and stresses of the pinched beam. 

Table 1. Displacements and stresses. 

Grid 
Displacements, mm Stresses, kN/m2 

Free end of the beam Center of the plate Pinched end of the beam Center of the plate 
FEM–S FEM–D FEM–S FEM–D FEM–S FEM–D FEM–S FEM–D 

a) 1.029 0.585 0.835 0.173 35.08 16.20 42.38 8.275 
b) 0.911 0.608 1.030 0.439 34.70 20.50 49.76 25.00 
c) 0.883 0.785 1.010 0.729 36.22 29.81 59.24 48.00 

Analytical 0.864 0.898 36.0 64.625 
 

An analysis of the calculation results of the pinched beam shows that when grinding the finite element 
meshes, with stress piecewise constant approximations, the stresses converge with the exact values from 
above. In addition, the displacements obtained by the finite element method, based on the displacement 
approximations, approach the exact values from below. Thus, in terms of displacements, we have two 
alternative solutions. Similar results were obtained using the finite elements based on piecewise constant 
stress approximations for the bending plates and the flat theory of elasticity [8, 9]. 

Moreover, the displacements and stresses values obtained by the proposed method are more 
accurate than the values calculated by the traditional finite element method based on displacement 
approximation. For example, the stresses obtained with the finest mesh by the displacement approximation 
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method are 17% less than the analytical value, and the stresses obtained by the proposed method 
practically coincide with the exact value. The deviation of the displacement value obtained by the FEM–S 
method from the analytically obtained one is 2%, and the displacement obtained by the FEM–D method 
deviates from the exact value by 9%. 

   
a) b) c) 

Figure 9. Division of the plate quarter into finite elements. 
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Figure 10. Displacements and stresses of the hinged plate center. 

When analyzing the square hinged plate calculating results for a uniformly distributed load, the same 
trends are observed (Fig. 10). For the finite element mesh shown in Fig. 9c, the displacements obtained by 
the FEM-S method are 12% more than the analytical value, and the displacements obtained by the FEM-
D method are 19% less. In addition, the displacement values obtained by the FEM-S method, when the 
finite element mesh is refined, approach the exact value from above. The stresses at the plate center, 
obtained by the FEM-S method, are also more accurate and differ from the analytical value by 8 percent. 
The stresses obtained by the FEM-D method are less than the analytical value by 26%. 

At present, volumetric finite elements are increasingly used to calculate such problems as nodal 
connections, connections of columns and slabs, and calculation of variable section elements. In such 
structures, points and areas of increased stresses arise, which, as a rule, are located at the edges and 
boundaries of the areas. In such cases, the use of the proposed finite elements, based on piecewise 
constant approximations, will allow more accurate determination of the structure stress-strain state, and, 
accordingly, increase the design solutions reliability.  

4. Conclusion 
1. The volumetric triangular prism finite element based on piecewise constant approximations of 

stresses is presented. The stress fields are continuous along finite element boundaries and discontinuous 
inside them. The solution of the volume theory elasticity problem was obtained on the basis of the additional 
energy functional and the possible displacements principle. 

2. The displacements obtained by the proposed method, when refining the finite elements mesh, 
tend to exact values from above; they are more accurate than the values obtained by the finite element 
method in displacements. 

3. As the test problems solutions showed, the proposed finite elements allow obtaining more 
accurate stress values compared to traditional finite elements based on displacements approximations. In 
this method, the stresses are determined directly at the nodal points, and not at the finite element centers. 
For the first example, the stresses obtained with the finest mesh by the displacement approximation method 
are 17 percent less than the analytical value, and the stresses obtained by the proposed method practically 
coincide with the exact value. For the second task, the stresses at the plate center, obtained by the 
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proposed method, are also more accurate and differ from the analytical value by 8% and the stresses 
obtained by the finite element method in displacement are 26% less than the analytical value. 
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