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Abstract. When calculating beams resting on a solid elastic foundation, the simplest foundation models 
proposed by Winkler-Zimmerman and Vlasov-Leontyev are often used. These hypotheses have been 
repeatedly subjected to well-founded criticism, because they do not take into account the inclusion in the 
work of some areas of the base and do not allow determining reactive pressures at the ends of the 
foundation beam and beyond it. In order to clarify these hypotheses, many authors have proposed some 
other models that allow smoothing out the shortcomings of these models to varying degrees. This article 
proposes a new numerical approach to solving the problem of a beam on a two-parameter elastic 
foundation. To calculate the beam, the finite element method has been used. A separate rod has been 
proposed as a finite element for solving the bending state of the beam on a two-parameter model of an 
elastic foundation. There has been presented the construction of the stiffness matrix of this finite element. 
The elastic foundation is assumed to be linear, homogeneous and isotropic and is taken into account using 
the parameters r, s. The reactions of the elastic base, deflections and angles of rotation, the formulas for 
calculating bending moments and transverse forces have been determined. There have been given 
examples of static calculation of a beam on an elastic two-parameter foundation for the action of various 
loads. These examples demonstrate the effectiveness of the developed method. Reliability of the method 
proposed by the authors has been verified on test examples, and good agreement has been obtained with 
the well-known models of Winkler and Vlasov. 
 

Citation: Akhazhanov, S.B., Vatin, N.I., Akhmediyev, S., Akhazhanov, T., Khabidolda, O., Nurgoziyeva, 
A. Beam on a two-parameter elastic foundation: Simplified finite element model. Magazine of Civil 
Engineering. 2023. 121(5). Article no. 12107. DOI: 10.34910/MCE.121.7 

1. Introduction 
Structures in the form of beams and slabs on the yielding bases are widely used in various branches 

of technology, in particular in construction. The main problem in such tasks is to take into account the 
interaction in the “structure-foundation” system. In this case, the difficulty consists in selecting an 
appropriate mathematical model for the assigned engineering problem. 
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The study of the stress-strain state of foundation beams is mainly based on the Winkler model [1–3] 
in the form of two main options: a physical model of a two-parameter support structure [4–6], as well as a 
foundation beam model in the form of an elastic half-space [7, 8]. The well-known Winkler model does not 
take into account the bending deformation of the foundation itself, the presence of shear deformation, as 
well as the structural continuity of the soil; at the same time, the disadvantage is that the subsidence of the 
base is taken into account only within the area of the foundation structure [9, 10]. 

When using a foundation model with an elastic half-space, the force interaction between adjacent 
loads is taken into account, which corresponds to the realities of engineering problems. Based on a similar 
model, Kontomaris and Malamu [11] determine the contact forces between a rigid stamp in the form of a 
ball and an elastic body (base). At the same time, Baraldi and Tullini [12] propose a different variant in the 
form of a numerical model of a two-dimensional contact without taking into account friction between the 
bodies in the volume of a three-dimensional elastic half-space; meanwhile, bases with isotropic properties 
were studied to determine deformations (subsidence) and physical relationships between the components 
of the force vector. The other authors [13–15] introduced original parameters derived from the elastic half-
space model to describe various models of elastic anisotropy, taking into account effects, especially of 
transverse (shear) anisotropy. Still other scientists [16–18] studied the bending of foundation beams by the 
direct Galerkin method based on power series, the finite element method, etc. 

The authors of works [19–22] studied the analysis of beams on elastic foundation of Timoshenko in 
addition to the classical theory of beams. Theodore [23] developed an original computer code based on the 
finite element method for beams on an elastic foundation using the Matlab software package. Scientist 
Dinev [24] proposed an analytical method of calculating a beam of finite length on an elastic foundation 
based on a variational interpretation of the expression for the total potential energy functional. 
S. Limkatanyu et al. presented a nonlinear Winkler-based beam element with improved displacement 
shape functions that was capable of representing the nonlinear interaction mechanics between the beam 
and the foundation [25]. Sánchez and Roesset proposed a more accurate model of a beam on the elastic 
foundation for laterally loaded piles and used a consistent boundary matrix to evaluate the computing 
accuracy [26]. Results of other approaches, such as iterative methods [27], discrete singular convolution 
method [28], and boundary element method [29], can be found in the literature 

The presented models include an elastic foundation of the Winkler, Vlasov, and Pasternak types. An 
ideal model for calculating the foundation was obtained. Still, with the development of the scale of 
construction, the interaction of soil and foundation beams, slabs, and other elements requires deeper 
theoretical studies. The development of more realistic foundation models and simplified methods is very 
important for the safe and economical design of such type of structure. Therefore, it is important to develop 
mathematical models and methods for assessing the stress-strain state of beams lying on an elastic base, 
considering their geometric and physical characteristics.  

The present study takes an attractive approach for beams resting on an elastic foundation. The study 
aims to develop a simplified finite element model for calculating a beam on an elastic foundation is 
proposed. According to the proposed model, an elastic foundation is considered a single-layer model, the 
properties of which are described by two elastic characteristics. 

The novelty and importance of this article lie in the following: 

− a simplified finite element model is proposed, taking into account the elastic foundation, which is 
fundamentally different from the other models; 

− obtaining a simplified model of an elastic foundation adopted for modeling the mechanical 
behavior of the soil; 

− using the finite element method, in which the basic equations are derived, the stiffness matrix is 
determined, and the boundary conditions for beams of finite length resting on an elastic 
foundation are taken into account; 

− simplifying methods of calculating beams on an elastic foundation for their wider implementation 
in engineering practice; 

− carrying out a comparative analysis based on a simplified model of an elastic foundation and on 
traditional models of Winkler and Vlasov. 

2. Methods 
The initial differential equation for beam bending on a two-parameter elastic foundation is written in 

the form 
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The 22r  and 4s  dimensionless elastic characteristics are determined in the work [30] as: 
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The effect of the elastic foundation on the beam is taken into account by two parameters 0 1,P P  and 
is determined in [30] by the formula 
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where v  is the Poison's ratio, k  is the deformed state parameter that depends on the boundary conditions. 

The parameter k  depends on the boundary conditions and is determined as follows [31]: 

− for hinge-supported beam 
2

2
2

hk π=


; 

− for fixed-end beam 
2

2
24 hk π=


; 

− for cantilever beam 
2 2

24
hk π

=


; 

− for a statically indeterminate beam 
2

2
2

hk π=


. 

Original differential equation (1) differs from the classical equation of beam bending on the elastic 
foundation of the Winkler model in its structure there is an additional term containing the second derivative, 
which allows taking into account the effect of shear stresses. 

The beam on a two-parameter elastic foundation is calculated by the finite element method. From 
the mathematical point of view, the finite element method (FEM) is a numerical procedure for finding 
approximate solutions to boundary value problems for partial differential equations. 

When using the FEM, there are the following assumptions underpinning this development: 

− the finite element has a unit length and has two nodes at its ends; 
− the finite element is connected with other elements only in nodes; 
− loading the elements occurs only in nodes. 

3. Results and Discussion 
3.1. Finite element formulation 

A finite element selected from beam structures on an elastic foundation is considered. This element 
has the length  , the width 0h  and the bending stiffness EJ . Here E  is the modulus of elasticity of the 

material, and J  is the axial moment of inertia. The thickness of the elastic base is denoted as h , the 
modulus of elasticity of the material is E  (Fig. 1). 
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Figure 1. A finite element on an elastic foundation. 

The deformed state of this element is determined by the nodal displacements ( , , , )i i j jW Wϕ ϕ , and 

the stressed state is determined by the nodal forces ( , , , )i i j jF M F M . 

The deflection function has the following form 

1 2 3 4( ) ( ) ( ) ( ) ( )i i j jW x q x W q x q x W q xϕ ϕ= + + +  

2 3 2 3

1 22 3 2 3

2 3 2 3

3 42 3 2 3

( ) 1 3 2 , ( ) 2 ,

( ) 3 2 , ( ) ,

x x x x xq x q x

x x x xq x q x

   
   
   
   
   
   
   
   

= − + = − +

= − = − +



   



   

         (2) 

where 1 2 3 4( ), ( ), ( ), ( )q x q x q x q x  are the coordinate functions. 

The function of deflections (2) can be presented in the vector form 

( ) TW x q V= ⋅




, 1 2 3 4
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

, T
i i j jV W Wϕ ϕ=


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where Tq is the transposed vector of the coordinate functions, V


 is the vector of nodal displacements of 
the finite element. 

The potential energy of the finite element on a two-parameter elastic foundation is found as follows 
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where М(х) is the moment of flexion. 

Based on equation (3), the potential energy (4) had written in the following form 
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The finite element stiffness matrix elements , ,K K K
∧ ∨ 

 
 

 are determined by the following formulas 
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The work of the nodal forces is determined as follows 

0 0 0
1 , .
2
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From the condition of the finite element equilibrium )( 00 UA =  there is the basic dependence 

0 0 0 0: ,A U F K V= = ⋅
 

      (7) 

where 0K  is the finite element stiffness matrix taking into account the elastic foundation. 

Based on equation (2) and formula (5), the stiffness matrix of the finite element on the elastic 
foundation is determined as follows 
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The beam internal forces are presented as follows 

( )

2

2

3

0 3

2 21
0 2 2

0

( )( ) ,

( )( ) ,

6 1
1 ,

d W xM x EJ
dx
d W xQ x EJ g

dx
v P Ehg

k Eh

= − ⋅

= − ⋅ ⋅

−
= +

,                  (9) 

where M is a bending moment, Q is a shear force, g0 is the parameter of the beam shear force. 

One of the following boundary conditions must be satisfied at the beam edges. 
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1) If the beam edge has a full contact (touches fully) with the elastic foundation, then the boundary 
conditions as follows 

3 3

* * 0
0 0

, , ,
123

Q L M L hW f J
EJ EJ
⋅ ⋅

= = =  

where * *,W ϕ  are the beam edge displacements, L is the foundation length beyond the beam, 0EJ  is 
rigidity with the foundation deflection. 

2) If the ends of the beam are hinge-supported, then the boundary conditions as follows 

0, 0.W M= =  

3) If the ends of the beam are fixed, then the boundary conditions as follows 

0, 0.W θ= =  

4) If the ends of the beam are free, then the boundary conditions as follows 

0, 0.M Q= =  

The stiffness matrix of the internal forces is defined as follows  
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Reactive pressures of the elastic foundation are determined as follows 

2
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The reactive pressure stiffness matrix of the elastic foundation is determined as follows 
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The calculation of a beam on an elastic foundation by the finite element method is performed 
according to the following algorithm: 

1 Dividing the beam into finite elements and numbering the nodes and elements from left to right. 

2 Setting the directions of nodal displacements. 

3 Forming vectors of nodal displacements and external forces. 

4 Making the stiffness matrices of the beam elements. 

5 Forming the general matrix of beam stiffness. 

6 Determining the vector of nodal displacements of the beam. 
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7 Based on the main dependence, determining the vectors of nodal forces. 

8 The internal forces of the beam are determined through the vector of nodal displacements and 
the matrix of internal forces. 

9 Determining the reactive pressure of the elastic foundation using the reactive pressure matrix. 

3.2. Numerical Results and Analysis 
To verify the calculation accuracy, in order to compare the solution of the proposed simplified finite 

element model with other solutions of the Winkler and Vlasov model from the classical theory of beams on 
an elastic foundation, below there are several examples of solving engineering problems. 

In these problems, beams on an elastic foundation with different boundary conditions, external loads, 
and reaction coefficients of the soil foundation are considered. In this case, the stiffness matrices, internal 
nodal forces, and reactions of the elastic foundation are obtained using an improved method by applying 
the corresponding equations (8), (9), and (11). 

3.2.1. Example 1 

A simply supported beam on an elastic foundation is considered. A beam of length 10 m=  

m10= , width 0 1b m= , and height 0 2h m= , with the modulus of elasticity 520 10E kPa= ⋅  , is 

considered to be supported by a foundation having depth 5h m= , deformation modulus 40E kPa=  and 

Poisson's ratio 0.25ν = . The beam carries the external uniform vertical load 200 kNq
m

= . 

The calculated values of vertical deformations, internal forces are given in Table 1–3; the largest 
values are given in Table 4. Analytical and numerical solutions are given for the case of a uniformly 
distributed load. The results obtained are compared with similar values obtained earlier using the Winkler 
and Vlasov models (Fig. 2–4). 

Table 1. Vertical displacement values (simply supported beam on an elastic foundation). 

Case The length of the beam (  , m) 
0 2 4 5 6 8 10 

Wn 
Wa 
Ww 
Wv 

0 11.5997 18.5995 19.5308 18.5995 11.5997 0 
0 11.5918 18.5869 19.5175 18.5869 11.5918 0 
0 11.5623 18.5389 19.4671 18.5389 11.5623 0 
0 11.5901 18.5839 19.5144 18.5839 11.5901 0 

 
Table 2. Bending moment values (simply supported beam on an elastic foundation). 

Case The length of the beam (  , m) 
0 2 4 5 6 8 10 

Mn, 106 
Ma, 106 
Mw, 106 
Mv, 106 

0 1.59989 2.40124 2.49912 2.40124 1.59989 0 
0 1.59887 2.39831 2.49824 2.39831 1.59887 0 
0 1.59503 2.39197 2.49156 2.39197 1.59503 0 
0 1.59869 2.39789 2.49779 2.39789 1.59869 0 

 
Table 3. Shear force values (simply supported beam on an elastic foundation). 

Case The length of the beam (  , m) 
0 2 4 5 6 8 10 

Qn, 105 
Qa, 105 
Qw, 105 
Qv, 105 

9.9955 5.9961 1.9993 0 -1.9991 -5.9958 -9.9952 
9.9941 5.9965 1.9988 0 -1.9988 -5.9965 -9.9941 
9.9734 5.9785 1.9918 0 -1.9918 -5.9785 -9.9734 
9.9930 5.9944 1.9979 0 -1.9979 -5.9944 -9.9930 

 
Table 4. Maximum values of vertical displacements, bending moments and transverse forces 

(simply supported beam on an elastic foundation). 

Modular Ratio Property Case 
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







E
E

 Winkler Model Vlasov Model Analytical 
Model 

Present finite 
element model 

0.2 
Max Vertical displacement 2.412 2.465 2.543 2.536 

Max Bending moment, (105) 3.047 3.177 3.255 3.202 
Max Shear force, (105) 2.346 2.493 2.571 2.506 

0.1 
Max Vertical displacement 4.247 4.335 4.413 4.402 

Max Bending moment, (105) 5.467 5.569 5.649 5.632 
Max Shear force, (105) 3.242 3.366 3.448 3.412 

0.05 
Max Vertical displacement 6.950 7.057 7.137 7.110 

Max Bending moment, (105) 8.923 9.053 9.135 9.121 
Max Shear force, (105) 4.426 4.573 4.655 4.624 

 

 
Figure 2. Vertical displacement of the beam on elastic foundation. 
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Figure 3. Bending moment of the beam on elastic foundation. 

 
Figure 4. Shear force of the beam on elastic foundation. 

The results of the reactive pressure of the elastic foundation are shown in Figure 5. 
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Figure 5. Reactive pressure of the elastic foundation. 

3.2.2. Example 2 
A fixed-end beam on an elastic foundation is considered. The uniformly distributed load was chosen 

as 120 kNq
m

= . A beam of length 8 m= , width 0 1b m= , and height 0 2h m= . The beam's material 

has a modulus of elasticity 530 10E kPa= ⋅ . The physical and geometry parameters of the elastic 

foundations were 30E kPa= , 0.25ν =  and 4h m= . 

The comparison results of the beam displacement, bending moment, and shear force are shown in 
Tables 5–7 and the maximum value are given in Table 8, which indicate that the values obtained by the 
present method are in good agreement with the analytical, Winkler, and Vlasov models. Fig. 6–8 show the 
displacement, bending moment, and shear force diagrams. 

Table 5. Vertical displacement values (fixed-end beam on an elastic foundation). 

Case The length of the beam (  , m) 
0 1 2 4 6 7 8 

Wn 
Wa 
Ww 
Wv 

0 0.12266 0.35999 0.63998 0.35999 0.12266 0 
0 0.12248 0.35993 0.63987 0.35993 0.12248 0 
0 0.12249 0.35995 0.63992 0.35995 0.12249 0 
0 0.12249 0.35998 0.63997 0.35998 0.12249 0 

 
Table 6. Bending moment values (fixed-end beam on an elastic foundation). 

Case The length of the beam (  , m) 
0 1 2 4 6 7 8 

Mn, 105 
Ma, 105 
Mw, 105 
Mv, 105 

-6.39905 -2.19986 0.79995 3.19983 0.79995 -2.19986 -6.39905 
-6.39875 -2.19957 0.79984 3.19937 0.79984 -2.19957 -6.39875 
-6.39925 -2.19968 0.79992 3.19954 0.79992 -2.19968 -6.39925 
-6.39976 -2.19989 0.79998 3.19984 0.79998 -2.19989 -6.39976 

 
Table 7. Shear force values (fixed-end beam on an elastic foundation). 

Case The length of the beam (  , m) 
0 1 2 4 6 7 8 

Qn, 105 
Qa, 105 
Qw, 105 
Qv, 105 

4.79987 3.59982 2.39986 0 -2.39986 -3.59982 -4.79987 
4.79926 3.59944 2.39963 0 -2.39963 -3.59944 -4.79926 
4.79956 3.59958 2.39965 0 -2.39965 -3.59958 -4.79956 
4.79989 3.59986 2.39987 0 -2.39987 -3.59986 -4.79989 

0 1 2 3 4 5 6 7 8 9 10
0

1.1 105×

2.2 105×

3.3 105×

4.4 105×

5.5 105×

6.6 105×

7.7 105×

8.8 105×

9.9 105×

1.1 106×

R x( )

x
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Table 8. Maximum values of vertical displacements, bending moments and transverse forces 

(fixed-end beam on an elastic foundation). 

Modular Ratio Property 
Case 

Winkler Model Vlasov Model Analytical 
Model 

Present finite 
element model 

0.2 
Max Vertical displacement 0.359 0.361 0.373 0.368 

Max Bending moment, (105) 1.809 1.825 1.864 1.847 
Max Shear force, (105) 3.446 3.431 3.602 3.586 

0.1 
Max Vertical displacement 0.449 0.451 0.469 0.458 

Max Bending moment, (105) 2.255 2.287 2.344 2.298 
Max Shear force, (105) 3.985 3.959 4.039 3.916 

0.05 
Max Vertical displacement 0.526 0.529 0.530 0.532 

Max Bending moment, (105) 2.686 2.689 2.701 2.692 
Max Shear force, (105) 4.341 4.352 4.359 4.348 

 

 
Figure 6. Vertical displacement of the beam on elastic foundation. 
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Figure 7. Bending moment of the beam on elastic foundation. 

 
Figure 8. Shear force of the beam on elastic foundation. 

3.2.3. Example 3.  
A beam fixed at one end and supported at the other on an elastic foundation is considered. The 

beam on an elastic foundation was assumed to be subjected only to uniform vertical loads. The vertically 

uniform load was chosen as 0 0( ) , 100x kNq x q q
m

= =


. The physical and geometry parameters of the 

elastic foundations were deformation modulus 70E kPa=  and Poissons ratio 0.25ν = , and depth 

0 2 4 6 8

5− 105×

0
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Present Model
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x
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5− 105×

0
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6h m= . A beam of length 12 m= , width 0 1b m= , height 0 2h m= , and modulus of elasticity 
560 10E kPa= ⋅ . 

Reliability of the results of the method proposed by the authors was assessed according to the results 
of Winkler and Vlasov (Tables 9–12). At the same time (Figs. 9–11) it was found that displacements along 
the normal to the base, the internal forces obtained on the basis of the 4 models described above, are in 
good agreement. 

Table 9. Vertical displacement values (beam fixed at one end and supported at the other on 
an elastic foundation). 

Case The length of the beam (  , m) 
0 2 4 6 8 10 12 

Wn 
Wa 
Ww 
Wv 

0 0.33185 0.97638 1.48647 1.52865 0.98769 0 
0 0.33033 0.97712 1.48400 1.52786 0.98545 0 
0 0.32999 0.97612 1.48254 1.52644 0.98459 0 
0 0.33043 0.97741 1.48444 1.52833 0.98576 0 

 
Table 10. Bending moment values (beam fixed at one end and supported at the other on an 

elastic foundation). 

Case The length of the beam (  , m) 
0 2 4 6 8 10 12 

Mn, 105 
Ma, 105 
Mw, 105 
Mv, 105 

-8.39987 -3.10986 1.51123 4.79962 6.08686 4.70752 0 
-8.39434 -3.10902 1.51009 4.79677 6.08479 4.70794 0 
-8.38555 -3.10597 1.50800 4.79152 6.07935 4.70493 0 
-8.39693 -3.10989 1.51048 4.79808 6.08666 4.70964 0 

Table 11. Shear force values (beam fixed at one end and supported at the other on an elastic 
foundation). 

Case The length of the beam (  , m) 
0 2 4 6 8 10 12 

Qn, 105 
Qa, 105 
Qw, 105 
Qv, 105 

2.69975 2.53647 2.03312 1.19987 0.03341 -1.46785 -3.29982 
2.69842 2.53185 2.03214 1.19930 0.03331 -1.46581 -3.29807 
2.69530 2.52881 2.02978 1.19832 0.03397 -1.46408 -3.29665 
2.69916 2.53236 2.03250 1.19958 0.03345 -1.46606 -3.29919 

 
Table 12. Maximum values of vertical displacements, bending moments and transverse forces 

(beam fixed at one end and supported at the other on an elastic foundation). 

Modular Ratio Property 

Case 
Winkler 
Model 

Vlasov 
Model 

Analytical 
Model 

Present finite 
element 
model 

0.2 
Max Vertical displacement 0.540 0.545 0.561 0.551 

Max Bending moment, (105) 2.082 2.089 2.163 2.095 
Max Shear force, (105) 1.384 1.391 1.425 1.396 

0.1 
Max Vertical displacement 0.792 0.796 0.818 0.806 

Max Bending moment, (105) 3.131 3.139 3.157 3.148 
Max Shear force, (105) 1.730 1.735 1.757 1.744 

0.05 
Max Vertical displacement 1.050 1.059 1.074 1.069 

Max Bending moment, (105) 4.052 4.059 4.143 4.135 
Max Shear force, (105) 1.989 2.001 2.077 2.062 
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Figure 9. Vertical displacement of the beam on elastic foundation. 

 

 
Figure 10. Bending moment of the beam on elastic foundation. 
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Figure 11. Shear force of the beam on elastic foundation. 

In tables and figures Ww, Mw, Qw means vertical displacement, bending moment, and shear force 
by Winkler, respectively Wv, Mv, Qv vertical displacement, bending moment, and shear force by Vlasov. 
Vertical displacement (Wa), bending moment (Ma), and shear force (Qa) had determined by the analytical 
model [32]. The present finite element model found vertical displacement (Wn), bending moment (Mn) and 
shear force (Qn). 

The presented examples show the advantages of the suggested approach for a numerical beam 
solution on an elastic foundation. The tables and figures show the excellent agreement of the proposed 
method with the results obtained by the Winkler and Vlasov models. These results are in good agreement 
with the results of the author's work, which were obtained using a different approach [32]. 

4. Conclusions 
This article proposes a simplified model of the finite element method of solving the problem of the 

bending state of finite length beams interacting with a two-parameter base. 

Some conclusions can be drawn from the results: 

1. The elastic foundation is considered without increasing the degrees of freedom of the finite 
element. 

2. On the basis of the proposed finite element model, which allows determining the deformation 
(displacement) of the force, an original (the author's) model has been developed. 

3. The corresponding formulas for the finite element stiffness matrix, reactive pressure, internal 
forces, and vertical and nodal displacements are derived. 

4. A simplified version of the elastic foundation model is defined. The elastic foundation was taken 
into account using two parameters. 

5. Reliability of the method proposed by the author was evaluated on three test examples; the results 
obtained are in good agreement with the results obtained on the basis of the Winkler and Vlasov models. 

The simplicity of mathematical techniques and the clarity of the scheme make the simplified finite 
element method under consideration very flexible and allow solving not only the main problems of 
calculating beams on an elastic foundation but several more complex issues. 

Civil engineers use off-the-shelf software for calculations of foundation structures. The proposed 
finite element model may be of interest to software developers. 
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