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Abstract. The article presents comparative calculations of reinforced concrete beams using two types of 
beam finite elements: with three and five nodal degrees of freedom. Calculations were performed both 
taking into account the concrete and reinforcement physical nonlinearity, and without taking it into account. 
The expressions for stiffness matrix elements and the load vector were obtained for the finite element with 
five nodal degrees of freedom. Calculations taking into account physical nonlinearity were performed using 
the variable elasticity parameters method. As a structure for comparing solutions obtained by the two types 
of finite elements, a single-span clamped horizontal and inclined reinforced concrete beam were used. The 
accuracy of calculating beam axis deformations and curvature depending on the number and type of finite 
elements was assessed. It was shown that when performing linear calculations, bending moments, 
longitudinal forces and displacements do not depend on the number of finite elements with five degrees of 
freedom into which the beam had been divided. When solving physically nonlinear problems, if we refine 
the finite element mesh, the solutions obtained for elements with three degrees of freedom tend to the 
solutions obtained for a smaller number of elements with five degrees of freedom. The proposed beam 
finite element with five nodal degrees of freedom makes it possible to determine more accurately the axis 
curvature and deformation, which is especially important when solving physically nonlinear problems. 
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1. Introduction 
The bending beams, compressed-bending and tensile rods are widely used in the building structures 

for various purposes. A large number of scientific articles are devoted to the use of finite element method 
(FEM) for calculation of such structures. 

In [1], to calculate the beams on an elastic foundation, a finite element with three degrees of freedom 
at the nodes was used. The article notes the simplicity of the mathematical apparatus and the clarity of the 
diagram, which make the simplified FEM under consideration very flexible and allow us to solve the basic 
problems of calculating beams on an elastic foundation and other problems. 

Article [2] is devoted to the three-dimensional nonlinear finite element analysis of inflatable beams. 
The beams under consideration are made of modern textile materials and, when inflated, can be used as 
load-bearing beams or arches. A three-noded spatial element was used, which has five degrees of each 
node freedom: an axial displacement along the beam element local axis, two transverse displacements 
along the two main axes, and two rotation angles. It was shown that the beam models had been in good 
agreement with the nonlinear thin-shell model. 

In [3], the study develops a finite element formulation for the distortional buckling of I-beams. The 
formulation characterizes the distribution of the lateral displacement along the web height by superposing 
(a) two linear modes intended to capture classical non-distortional lateral-torsional behavior and (b) any 
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number of user-specified Fourier terms intended to capture additional web distortion. All displacement fields 
characterizing the lateral displacements are taken to follow a cubic distribution in the longitudinal direction. 

Currently, volumetric finite elements are often used to study reinforced concrete bars. In [4, 5], a 
reinforced concrete beam is modeled using volumetric finite elements, taking into account the possible 
slipping of reinforcing bars and fibers. Based on the results of the study, recommendations were made on 
the reinforcement anchorage length. 

In [6], a curved beam three-node finite element with nine degrees of freedom at each node was used 
to model multilayer beams with an arbitrary cross-section. It was noted that the numerical results indicate 
the effectiveness of the proposed contact solution to problems entailing various contact configurations. 

Article [7] presents the formulation of strain-based finite elements for modelling composite beams 
with finger joints considering slip between the layers. The finite elements were derived in accordance with 
Reissner beam theory based on the modified virtual work principle where the displacements and rotations 
had been eliminated from the problem and axial deformation, shear deformation and curvature of the layers 
remain only functions to be approximated within the finite element. It was noted that the numerical model 
had been thoroughly tested and the results had shown that the presented finite element formulation had 
been an efficient tool for practical calculations. 

Article [8] was devoted to the modeling of the nonlinear behavior of reinforced concrete structures 
subject to transverse shear or torsion under monotonic and cyclic loading. The fiber beam element 
approach was improved for shear effects. The 3D beam element was improved by adding an additional 
degree of freedom, which represented the deformation displacements of the cross-section. The element 
formulation was verified using an analytical solution for transverse shear, and 3D simulations of beams 
subject to shear and torsion. 

Article [9] presents a new finite element formulation for the nonlinear analysis of two-layer composite 
planar frames with an interlayer slip. For each layer the geometrically nonlinear Reissner beam theory was 
assumed. As shown in one of the numerical examples, the use of the geometrically linear theory instead of 
the nonlinear one can lead to an error in determining the axial forces and bending moments in each layer 
as big as 20–80 %. 

To calculate reinforced concrete and steel concrete beams taking into account physical nonlinearity, 
volumetric finite elements are often used [10–13]. A simply supported concrete fiber-reinforced beam was 
modeled using nonlinear volumetric eight-node finite elements in [10]. The work made an important 
conclusion: the presence of some fiber type in mortars can reduce compressive and flexural strength. This 
can be attributed to several factors: a decrease in the density of specimens, weak interfacial adhesion and 
negatively affected cement hydration, etc. 

The principal purpose of [14] was to compare three different ways of determination of critical moment, 
also in the context of structural sensitivity analysis with respect to the structural element length. Sensitivity 
gradients were determined using the analytical solution, the finite difference and the finite element methods. 
The most important conclusion drawn from the computational analysis carried out in this paper was good 
agreement of all available methods, i.e., analytical methods, finite difference, and finite element methods, 
to determine the critical moment in thin-walled single-span structures. 

Article [15] presents numerical and experimental studies of T-shaped reinforced concrete beams. 

The various finite elements types were used to model the performance of box girder bridges [16–18]. 
Article [16] formulated a novel one-dimensional refined beam FEM that takes into account non-uniform 
distortional warping and secondary distortional moment deformation effect to analyze the deformation of 
thin-walled multi-cell box beams. This finite element was based on an extended version of generalized 
Vlasov’s thin-walled beam theory. The proposed one-dimensional beam elements demonstrated desirable 
predictions for the deformation behavior of thin-walled single- or multi-cell box beams with constant or 
variable depth. The accuracy and reliability of these predictions were compared to shell finite element 
calculations. 

Article [19] for the multilayer beams analysis proposes a finite element based on nonlinear Reissner 
beam theory. The connection between the layers was specified by an arbitrary function of the stiffness of 
springs, continuously distributed along the element length. The displacement field on which the stiffness 
function depends upon was expressed in a local, deformed basis. The large movements and rotations were 
taken into account. Distributed force which resulted from the interaction between layers, was included in 
the governing equations to avoid the need for additional interface elements and to integrate the equations 
using a single numerical method. The predicted deflection curve of each beam was compared to its 
experimental counterpart over the entire load range up to failure, and the two curves were found to be in 
reasonable agreement. A distinctive feature of the present analysis is that it captures not only the onset 
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and propagation of the delamination process, but also the total post-peak load or softening response of 
each beam. 

Article [20] studied beam finite elements that use absolute nodal coordinates to express 
deformations. Such finite elements use strain gradient components rather than rotational degrees of 
freedom, resulting in a consistent and constant mass matrix. The article noted that most of the considered 
methods for eliminating locking gave the expected results compared to classical finite elements. 

Article [21] presented a method for determining all six stress components for a cantilever-type beam 
that was subjected to concentrated end loads. The method considered an inhomogeneous cross-section 
and used the cylindrically orthotropic properties of the material. The solution was based on a displacement 
field formulation that includes unknown in-plane distortion and warping functions. A simple FEM procedure 
was then used. The efficacy of the method was confirmed by a series of numerical examples corresponding 
to the analytical results. 

Article [22] addresses contact problems associated with large deformations of curved beams. Noted, 
the contact was difficult to analyze due to uncertainty of the contact positions and strong nonlinearity. A 
new adaptive differential quadrature element method was proposed to predict the contact positions of a 
curved beam with a finite number of contact points. The simulation results showed that the proposed 
element method significantly improved the efficiency and accuracy of solving the curved beam large-
deformation contact problem. 

Article [23] proposes a general procedure of actions aimed at increasing the seismic resistance of 
the foundations of turbine units. Implementation of the proposed methodology was carried out on a specific 
example of a vibroisolated foundation: the dependences of seismic accelerations and displacements were 
obtained for different variants of seismic isolation. 

The beam finite elements are often used for the analysis of various multilayer’s types [24–26] and 
multi-stage beams [27]. Article [24] presents a beam finite element for modal analysis of a double symmetric 
cross-section made of a functionally graded material. The material properties in a real beam can vary 
continuously in longitudinal direction, while the variation with respect to the transversal and lateral directions 
was assumed to be symmetric in a continuous or discontinuous manner. The influence of shear force 
deformation was taken into account, as well as the influence of longitudinally varying inertia and rotational 
inertia. 

Article [28] aims to study the influences of the viscoelastic and anisotropic properties of a material 
on the dynamical behavior of the plate. For the first time, an integral model is used to consider the 
viscoelastic properties of materials of an anisotropic structure. The integral mode correctly describes the 
rheological processes occurring in the studied structure during the entire time. The presented mathematical 
model makes it possible to obtain sufficiently accurate solutions that are well combined with experimental 
results. 

Articles [29–31] presented finite elements constructed based on the stress’s approximations. The 
solutions were based on the additional energy functional, to which algebraic equilibrium equations were 
added using Lagrange multipliers. The stresses or forces can be approximated over the finite element 
domain by constant or piecewise constant functions. In [32], a beam finite element with five degrees of 
freedom was proposed to solve problems of beam systems stability. A deformation and axis curvature were 
added to the standard nodal degrees of freedom. These works show that such finite element makes it 
possible to more accurately determine critical forces with minimum finite elements number. 

A number of works present beam finite elements for the calculation of composite steel-concrete [33] 
and wood, in combination with a steel profile [34], structures. In papers, the comparison of solutions with 
experimental results was presented. The finite elemental analysis was also used for the design of laminated 
timber beams [35, 36]. The works examine the bending and shear stiffness of wooden beams with a 
composite cross-section. The tests of wooden samples and beams were carried out. A comparison was 
made between the experimental data and the finite element analysis results. 

The purpose of current work is to perform comparative calculations of reinforced concrete beams 
using beam finite elements of two types: with three and five degrees of freedom at the node. The 
calculations must be performed both taking into account the physical nonlinearity of concrete and 
reinforcement, and without taking it into account. It assumes to evaluate the accuracy of calculating 
deformations and curvature of the beam axis depending on the number and finite elements type, as well 
as the accuracy of calculating stresses in reinforcing bars in the process of increasing the load until failure. 
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2. Methods 
When solving structural mechanics problems using FEM, taking into account physical nonlinearity, 

the importance of determining deformations accuracy in the finite element region increases. The more 
accurately the deformations are calculated, the more accurately the stiffness finite elements parameters 
will be determined, and the more accurately the stresses and displacements will be determined. 

  
a b 

Figure 1. Variants of a rod finite element nodal unknowns. 
In the standard rod finite element (Fig. 1a), the following polynomials are used to approximate the 

displacement fields: 
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The deformations at any point in the finite element cross-section are determined by the deformation 
of the neutral axis 0ε  and the axis curvature value 0χ : 
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Thus, the neutral axis deformations are constant along the finite element length, and the axis 
curvature changes linearly. The axis curvature value at the beginning or end of an element depends on the 
displacement and rotation angle of the opposite node. Therefore, it is obvious that during the transition from 
one finite element to another, at the nodal point the deformations can undergo a discontinuity, both due to 
a jump in the axis deformation 0ε  and due to a discontinuity in the axis curvature value 0.χ  Below we will 
give numerical examples illustrating discontinuities in the deformation fields at the nodal points of the finite 
element mesh. 

In [32], to solve rod systems stability problems, a finite element with five degrees of nodal freedom 
was proposed (Fig. 1b). To approximate transverse displacements a fifth-degree polynomial was used, and 
for longitudinal displacements a third-degree polynomial was used. The deformation of the neutral axis and 
curvature were taken as additional unknowns at the nodes. Thus, if necessary, the deformations continuity 
at nodal points is ensured. 

The functions of a finite element transverse and longitudinal displacements are determined by 
expressions (3–5): 
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In this case, the neutral axis deformation varies along its length as a quadratic function, and the axis 
curvature varies according to a cubic polynomial: 
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In the future, we will agree to denote a finite element with three degrees of freedom as FE-3, and 
with five degrees of freedom as FE-5. 

Let us obtain expressions for the secant stiffness matrix’s elements of a reinforced concrete finite 
element, the cross section of which is shown in Fig. 2. A concrete and reinforcement can have arbitrary 
nonlinear dependencies ( ).σ ε  The number of reinforcement layers in a section is also arbitrary. 
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Figure 2. The beam cross section and deformations diagram. 

,f iA  is reinforcing bar cross-sectional area; ,f iz  is coordinate of the reinforcing bar position along 

1Z  the axis; ,b  h  are cross-sectional dimensions. We write the expressions for the median plane 
deformations and the axis curvature in the following vector form: 

T T
0 u u 0 w w, .ε = χ =N z N z                                                            (8) 

For FE-3 with three nodal degrees of freedom, we obtain the following expressions: 
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For FE-5 with five nodal degrees of freedom, the expressions will be as follows: 
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Using the above notations, the strain energy expression of the finite element will have the following 
form: 
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We take denotations for the cross-section rigidity parameters: 
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The expression (13) can be written in the following form: 
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Substituting (8) into (15), we get: 
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Let us introduce the following notation: 
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The finite element stiffness matrix in the local coordinate system will have the following simple form: 
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For FE-5, the integrals (17) expressions will include the products of the third- and fifth-degrees 
polynomials. The stiffness parameters (14) for nonlinear problems will be variable along the length of the 
element. To calculate integrals (17), we apply the well-known Gauss-Legendre numerical integration 
procedure: 
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,iG  iξ  are weight factor and integration point coordinate on the interval [–1, 1]. 

To calculate integrals (14) at points ix  corresponding to the Gauss-Legendre coordinates, we use 
the trapezoidal method: 
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n  is the sections number into which the section during numerical integration is divided by height. The 

elasticity secant modules s
bE  and ,

s
f jE  are determined from specified dependencies ( )σ ε  for concrete 

and reinforcement. In expressions (20), in accordance with the method of trapezoidal, the following 
parameters are used: 
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The stiffness matrix LK  expression was obtained in the local coordinate system of the finite element 

1 1X Z  (Fig. 1). The direction cosine matrices C  for moving to the global coordinate system are given 
below: 
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l
−
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1,y  2y  are coordinates of the finite element start and end in the global coordinate system. Using (22), we 

obtain the stiffness matrix iK  expression for finite element i  in the global coordinate system: 

T
L .i =K C K C                                                                             (24) 

Let us calculate the nodal forces vector from the action of uniformly distributed loads on FE-5 in the 
local coordinate system. The work of distributed loads will be expressed as follows: 
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Substituting expressions (3–4) into (25), we will obtain: 
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 
 − −
 =
 
 

z
z B z

z

B
                  (27) 

Vector T
L .=z C z  Then we will get: 

T
q LA .= z CB                                                                     (28) 

Calculating the derivative of work (28) with respect to the vector, we obtain the nodal forces vector 
from the action of uniformly distributed loads in the global coordinate system. 

q L.=R CB                                                                          (29) 

For FE-3 vector: 

2 2
T 1 1 1 1 1 1 .L 2 12 2 12 2 2

q l q l q l q l q l q lz z z z x x
 − 

=  
 
  

B                                         (30) 

From the vectors qR  formed for the finite elements, and the forces and moments concentrated in 

the nodes, the load vector R  for the entire system is formed. The global stiffness matrix of the system is 
defined as the sum of finite element stiffness matrices 

.i
i

= ∑K K                                                                         (31) 

We write the system of the nonlinear algebraic equations in the following form: 

( ) .=K Z Z R                                                                       (32) 

Z  is the nodal unknown’s global vector for the entire system. 

We will solve the nonlinear equations system (31) using the well-known method of variable elasticity 
parameters. The main stages of solving the nonlinear problem are presented in Fig. 3. 
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5. If 0.005eps >  then go to 2 

6. Exit 

Figure 3. The method of elastic solutions algorithm. 
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3. Results and Discussion 
The main aim of this study is to compare the values of curvature and axis deformation for various 

finite elements sections, obtained when using two options for approximating displacements. As a structure 
for comparing solutions obtained, using two variants of finite elements FE-3 and FE-5, we will use a single-
span clamped horizontal and inclined reinforced concrete beams (Fig. 4). A uniformly distributed vertical 
load is applied to the beam. In reference sections, both displacements and rotation angles are excluded. 

qz

 

 
a b 

Figure 4. The horizontal and inclined beams. 
The beam data are given in Table 1. Stress-strain diagrams for concrete and beam reinforcement 

are shown in Fig. 5. 

Table 1. The clamped beam characteristics. 

Beton Reinforcement Length, m b, cm h, cm 
Bottom reinforcement Top reinforcement 

Diameter, mm zf, mm Diameter, mm zf, mm 
B30 A-III 6 20 40 2 d20 – 160 2 d20 160 

 

Tables 2 and 3 present the characteristics of concrete and reinforcement necessary for constructing 
stress-strain diagrams. 

Table 2. The characteristics of concrete. 

bR , MPa btR , MPa 1bε  0bε  2bε  1btε  0btε  2btε  

17000 1150 – 0.000314 – 0.002 – 0.035 0.0000212 0.0001 0.00015 
 

Table 3. The characteristics of reinforcement. 

sR , MPa 0sε  2sε  0stε  2stε  

350000 – 0.00167 – 0.015 0.00167 0.0015 

  

a b 
Figure 5. The stress-strain diagrams for concrete and reinforcement. 
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3.1. Linear Сalculations 
To compare solutions, beam calculations were performed (Fig. 4) when it was divided along the 

length into 2, 4, 8 and 16 finite elements. Calculations were performed in a linear formulation at the initial 
value of the concrete elastic modulus E  = 30000 MPa. Reinforcement was not taken into account. The 
distributed load was assumed to be equal to q  = 10 kN/m. 

When calculating physically linear problems, it turned out that the bending moments and 
displacements in all beam nodal sections are the same for both versions of finite elements, regardless of 
the finite elements number. At the same time, we note that for the FE-5, the solution can also be obtained 
if the beam is represented by only one finite element. In this case, the only unknown parameters are the 
beam curvatures at the beginning and end. The solution even with this beam representation was exact. 

Table 4. The beam sections axis curvature, q=10 kN/m (Fig. 4a). 

A section 
coordinates 
along length, 

m 

FE-3 [37] FE-5 Bending 
moments,  

kN·m 2 elements 4 elements 8 elements 16 elements 1 element 

0 – 0.000578 – 0.0007227 – 0.0007589 – 0.0007679 – 0.0007710 – 30 
0.75 – 0.000289 – 0.0002891 – 0.0002530 – 0.0002620 – 0.0002650 – 10.313 
1.5 0 0.0001445 0.0001084 0.0000994 0.0000960 3.75 

2.25 0.000289 0.0002891 0.0003252 0.0003162 0.0003130 12.188 
3.0 0.000578 0.0004336 0.0003975 0.0003885 0.0003850 15 

 

 
Figure 6. Axis curvature of the clamped beam (Fig. 4a). 

Table 4 and Fig. 6 show the axis curvature values for various options for dividing the beam into finite 
elements under the action of a uniformly distributed load. For FE-5, the curvature values are the same for 
any elements number. Therefore, Table 4 presents the values for the case of the beam being represented 
by one FE-5. Using FE-3 [37], calculations were performed when the beam was divided into 2, 4, 8, and 16 
finite elements. A comparison of the results shows that when the finite element mesh is refined, the axis 
curvature values in all beam sections tend to the values, which were obtained for one FE-5. The largest 
deviation in curvature values is observed in the pinched point. Therefore, when using two FE-3, the 
curvature value in the pinch point is 25 % less than the value obtained using FE-5. When using four 
elements, the deviation in this curvature values is 6 %. Therefore, the beam dividing into four FE-3 is not 
sufficient to obtain accurate curvature values in beam sections. We also note that the use of FE-3 gives 
underestimated curvature values in the extreme section where the bending moment has a maximum value 
by module. 
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Table 5. The vertical displacements of the clamped beam, q=10 kN/m (Fig. 4a). 

A section 
coordinates 

along length, m 

FE-3 [37] FE-5 

2 elements 4 elements 8 elements 1 element 

0 0 0 0 0 
0.75 – 0.000164 – 0.000197 – 0.000201 – 0.000201 
1.5 – 0.000525 – 0.00059 – 0.00059 – 0.00059 

2.25 – 0.000885 – 0.000918 – 0.000922 – 0.000922 
3.0 – 0.001049 – 0.001049 – 0.001049 – 0.001049 

 

Table 5 shows the displacement values of beam sections for various finite element mesh options. 
The displacement values calculated at the finite element nodes are marked in bold, and the values in 
intermediate sections located between the finite element nodes are shown in regular font. It is interesting 
to note that the nodal points displacements when using FE-3 coincide with the values calculated when 
using one FE-5, and the values at the intermediate points of FE-3 differ from the exact ones. 

Thus, for any mesh, the nodal displacements for FE-3 are calculated accurately, and the 
displacements of intermediate points between nodes approach the exact ones when the mesh is refined. 
The use of FE-5, due to additional degrees of freedom, leads to the displacement’s refinement of 
intermediate sections between the finite element nodes, as well as to the refinement of axis curvature and 
deformations at the nodes and in the intermediate sections. In this case, for a clamped beam it is enough 
to use one FE-5. 

Figs. 7–8 show the calculation results of an inclined beam under the uniformly distributed load action 
(Fig. 4b). In this case, in addition to curvature, longitudinal deformations also occur in the sections. 

  
a b 

Figure 7. The deformations of the inclined clamped beam (Fig. 4b)  
and errors in calculating curvatures and axis deformations for FE-3. 

The graphs of changes in the inclined beam axis curvature, depending on the number and type of 
finite elements, coincide with the horizontal beam graph (Fig. 6). In this case, compressive forces and, 
corresponding to them, the beam axis longitudinal deformations arise too (Fig. 7a). When using FE-3, 
longitudinal deformations change stepwise along the beam length, and when using FE-5, the deformations 
change linearly, which corresponds to the law of longitudinal forces change. When FE-3 mesh is refined, 
the longitudinal deformation's values tend to the corresponding values obtained for FE-5. However, even if 
we use eight FE-3, the error in the longitudinal strains value is more than 10% (Fig. 7b). Fig. 7b also 
presents the errors in the axis curvature and axis deformation calculation for FE-3 depending on the finite 
elements number. Note that the error in calculating axis curvature is smaller but also significant when the 
FE-3 number is small. 

3.2. Nonlinear Calculations 
To determine the calculating accuracy of the stress-strain state parameters, taking into account the 

physical nonlinearity of concrete and reinforcement, the calculations were performed for an inclined beam 
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(Fig. 4b) with symmetrical reinforcement (Fig. 2). The calculations were performed both for different loading 
levels up to failure, and for different numbers of finite elements FE-3 and FE-5 at the same loading level 

zq  = 40 kN/m. To guarantee high numerical integration accuracy, during nonlinear calculations the section 
was divided in height into forty layers and nine Gauss-Legendre integration points were used along the 
length of the finite element. The nonlinear problem was solved iteratively using the elastic solutions method 
(Fig. 3). Fig. 8–10 show the calculation results of an inclined reinforced concrete beam (Fig. 4b) on the load 
action zq  = 40 kN/m. 

 
Figure 8. The vertical displacement of the beam center. 

 

   

a b c 

Figure 9. The bending moments in the inclined beam at zq  = 40 kN/m. 

 

  
 

a b c 

Figure 10. The longitudinal forces in the inclined beam at qz  = 40 kN/m. 
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Comparing the calculation results shown in Fig. 8–10, the following conclusions can be drawn: 

• when using FE-5, the displacements magnitude, bending moments and longitudinal forces 
practically do not depend on the elements number into which the beam is divided; 

• when refining the finite element mesh, the solutions obtained for FE-3 tend to the solutions 
obtained for FE-5; 

• the greatest difference between the two solutions is observed for the longitudinal forces 
magnitudes; for a more accurate longitudinal forces calculation using FE-3, a mesh of at 
least eight elements is required; 

• in contrast to the linear calculation, there is no coincidence of bending moments and 
displacements at nodal points obtained using finite elements FE-5 and FE-3; 

• with four finite elements mesh, the differences in the bending moments values do not exceed 
5 %, and for longitudinal forces they can be more than 15 %. 

Next, we compare the reinforcing bars stress values. Fig. 11–13 show the reinforcing bars stress 
values for the support sections and the center of the inclined reinforced concrete beam for various options 
for beam dividing on the finite elements under the load action. It should be noted that the reinforcement 
stresses obtained for finite elements FE-3 and FE-5 differ more significantly, compared to the difference of 
the bending moments and longitudinal forces values. Bending moments and longitudinal forces differ little 
with the eight finite elements mesh, and the stresses in tensile reinforcement of the left and right support 
sections, in this case, differ by 27–28 % (Table 6). These calculation results are consistent with the results 
obtained from linear calculations, which showed that when we use FE-3, deformations and curvatures are 
calculated less accurately than moments and longitudinal forces. 

  

a b 
Figure 11. The stresses of the reinforcement rods in the left pinch. 

 

 

 
a b 

Figure 12. The stresses of the reinforcement rods in the beam center. 
 

 

2 4 6 8
100000

200000

300000

400000

FE-5
FE-3

The stress of upper rod in the left pinch

elements number

st
re

ss
es

,  
kN

/m
2

2 4 6 8
250000−

200000−

150000−

100000−
FE-5
FE-3

 The stress of lower rod in the left pinch

elements number

st
re

ss
es

, k
N

/m
2

2 4 6 8
50000

100000

150000

200000
FE-5
FE-3

The stress of lower rod in the beam center

elements number

st
re

ss
es

, k
N

/m
2

2 4 6 8
130000−

120000−

110000−

100000−

90000−

FE-5
FE-3

The stress of upper rod in the beam center

elements number

st
re

ss
es

, k
N

/m
2



Magazine of Civil Engineering, 17(4), 2024 

  

a b 
Figure 13. The stresses of the reinforcement rods in the right pinch. 

Table 6. The upper reinforcing bars stresses of the support sections, kN/m2. 

Number of 
finite 

elements  

The upper rod stress of the left pinch, 
kN/m2 The upper rod stress of the right pinch, kN/m2 

FE-3 FE-5 Difference, % FE-3 FE-5 Difference, % 
2 119800 270700 55.7 135900 302400 55.1 
4 158300 320400 50.6 185700 350000 46.9 
8 230000 315700 27.1 250300 350000 28.5 

16 280400 312665 10.3 313085 350000 10.5 
32 297195 311805 4.7 337185 350000 3.7 

 

Table 6 shows the tensile reinforcing bars stress values of support sections for various finite elements 
numbers. The values given in Table 6 show that to obtain a reasonably accurate value we must use four 
FE-5 or 32 FE-3. Obviously, the differences in stress are determined by the inaccuracy of calculating 
curvature and longitudinal strain when we use FE-3. FE-5 allows you to calculate more accurately strains 
of reinforcement and concrete, which is necessary to determine the level of load leading to failure. The 
stress values of the stretched reinforcement on the support and, therefore, the deformations obtained when 
we use FE-3 are less than the corresponding stresses calculated when we use FE-5. Therefore, the solution 
obtained on the basis of FE-3 will determine overestimated failure load values, which will be shown below. 

The comparative inclined beam (Fig. 4b) calculations were performed with a gradual load increasing 
until the tensile reinforcement had reached the yield strength at the support and span sections. The beam 
was divided into 8 finite elements. 

 
Figure 14. The vertical displacement of inclined beam center. 

Fig. 14 shows the vertical displacement changes graph of the beam middle with load increasing. As 
is known, the system displacements obtained on the Lagrange functional basis when the mesh is refined 
tends to exact values from below. The approximation to exact values is achieved by increasing the total 
degrees of freedom number. FE-5 has a greater degrees of freedom number of the nodes compared to the 
FE-3, therefore, with the same finite element mesh, it gives a more pliable and closer to accurate solution. 
In addition, the ultimate load obtained using FE-5 is zq  = 75 kN/m, and that obtained using FE-3 is 
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zq  = 80 kN/m. The ultimate loads differ by about 7 %, and the displacements at the ultimate load differ by 
30 %. 

   
a b c 

Figure 15. The moments in the inclined beam (Fig. 4b). 
The bending moments of support sections that arise after the tensile reinforcement yielding onset 

when we calculated with FE-5 were less than the corresponding moments obtained when we used FE-3 
(Fig. 15). Accordingly, the midspan bending moments (Fig. 15b) for FE-5 were larger than those for FE-3. 
Thus, after the plastic deformations formation, the bending moments’ distribution along the beam length 
becomes different for the two finite elements types, in contrast to the elastic stage of the deformations. 

 
Figure 16. The stress of the upper rod in the left pinch. 

 
Figure 17. The stress of the lower rod in the beam center. 
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Figure 18. The stress of the upper rod in the right pinch. 

Figs. 16–18 show the tensile reinforcement stresses change of the support sections and span middle 
with an increase of the distributed load to the maximum level. At the same load level, the reinforcing bars 
stresses of the reference section obtained using FE-5 are greater than the corresponding stresses 
calculated using FE-3. For example, under load the stresses difference was 21 %. Note that, accordingly, 
the tensile reinforcement plastic deformations for FE-5 began at a lower load. 

4. Conclusions 
1. When performing linear calculations, the bending moments, longitudinal forces and displacements 

do not depend on the number of FE-5 into which the clamped beam is divided. Only one element 
can be used. For any mesh, the nodal displacements when using FE-3 are calculated accurately, 
and the intermediate points displacements between nodes approach the exact ones when the mesh 
is refined. Using FE-5, due to additional degrees of freedom, leads to the displacement’s, axis 
curvature and deformations refinements of the intermediate sections between the finite element 
nodes. 

2. When solving physically nonlinear problems with refinement of the finite element mesh, the 
solutions obtained for FE-3 tend to the solutions obtained for FE-5. The greatest difference between 
the two solutions was observed for the longitudinal forces’ magnitudes. To calculate more 
accurately longitudinal forces using FE-3, a mesh of at least eight elements was required. Unlike 
the linear calculation, there was no coincidence of bending moments and displacements at nodal 
points obtained using finite elements FE-5 and FE-3. 

3. FE-5 allows more accurate calculation of deformations of the reinforcement and concrete, 
especially at the extreme points, which is necessary to determine the load level leading to failure. 
The stretched reinforcement stress values on the support and, therefore, the deformations when 
we used FE-3 were less than the corresponding stresses for FE-5. Therefore, the solution obtained 
on the basis of FE-3 will determine overestimated breaking load values. 

4. The proposed beam finite element with five nodal degrees of freedom makes it possible to 
determine more accurately the axis curvatures and deformations, which is especially important 
when solving physically nonlinear problems. 
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