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Abstract. The soil properties characteristics are the object of the current study. Determination of the soil 
properties characteristics is a complex and responsible engineering and geological task. Reliability of 
engineering construction and its cost depend on the quality of solution of this task. The article presents the 
results of the study of the possibility of predicting the soil properties characteristics on the example of 
determining the sand deformation modulus. Based on the analysis of previous studies of correlation 
between the soil properties characteristics, the list of independent soil properties characteristics was 
determined: soil genesis, static normal stress, granulometric composition, initial density and humidity of the 
soil sample. The main disadvantages of existing methods of predicting the soil properties characteristics 
were identified. The possibility of using artificial neural network for predicting the soil properties 
characteristics was determined. The soil deformation modulus was selected as a response (dependent 
variable). The presence of not only numerical but also classification features among the independent 
characteristics did not allow predicting the soil properties characteristics within the framework of the 
classical regression model. A soil information model, based on an artificial neural network, was used to 
solve this problem because not only continuous quantitative but also discrete classification parameters 
(genesis) can be used among the independent parameters of the soil information model. Laboratory studies 
of 655 samples of alluvial sand of the Irtysh River floodplain were performed to confirm the possibility of 
using the soil information model. 5895 data vectors were obtained, including information on independent 
and response parameters. A detailed study of two granulometric compositions demonstrated limited 
possibilities for using known statistical methods for determining the soil properties characteristics. In 9 out 
of 20 cases, the results of the studies did not follow a normal distribution. The use of the soil information 
model allowed to solve this problem – the absolute percent error in determining the deformation modulus 
did not exceed 12.55 % (mean – 5.05 %), the coefficient of determination R2 was at least 0.83 for unloaded 
sand samples, and at least 0.94 for loaded ones, for all datasets – 0.97. The performed studies confirmed 
the prospects of using the soil information model for predicting soil properties based on its known 
characteristics, which reduced the cost of engineering and geological surveys while ensuring the required 
accuracy of determining the soil characteristics. 

Citation: Gruzin, A.V. Soil information model for prediction the soil properties characteristics. Magazine of 
Civil Engineering. 2024. 17(5). Article no. 12909. DOI: 10.34910/MCE.129.9 

1. Introduction 
Characteristics of soil properties are used to classify soils, describe their condition and reaction to 

external influences of various nature. Determination of the characteristics of the physical and mechanical 
soils properties is a complex engineering task. At the present time both theoretical and practical scientists 
continue to solve this task, despite the rich scientific and practical experience of engineering and geological 
surveys, laboratory determination and subsequent statistical processing of the obtained data. The reason 
for this is not only the variety of characteristics of various soil properties: physical, mechanical, chemical, 
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etc., used for engineering purposes, but also the soils variability, caused by the stochastic nature of their 
genesis. Evidently, this diversity of characteristics, combined with soil variability, requires a large number 
of samples to ensure the required reliability of the results of the characteristics determination. Since after 
laboratory studies, as a rule, the studied samples have a broken structure and are unsuitable for reuse as 
samples, the task of determining the required soil characteristics ceases to be only an engineering task. 
There is an economic aspect – the need to increase research expenses. 

To solve the problem, the author proposes a method, which reduces the number of samples needed 
and the number of studies for determining and predicting the soil properties characteristics. It is based on 
both correlations between characteristics and modern digital technologies. Thus, the soil properties 
characteristics are the object of the current study. A new method for predicting the soil properties 
characteristics is the subject of the study. 

1.1. Correlations between the Soil Properties Characteristics 
The solution to the problem of reducing the number of definitions of the soil properties characteristics 

is seen in the search for a correlation between the characteristics of various soil properties. Thus, the 
correlation between the characteristics of various soil properties will allow predicting the required 
characteristics based on the characteristics already studied. 

In 1925, K. Terzaghi was one of the first to point out the possibility of a correlation between the 
characteristics of soil properties [1]. He systematically identified the factors “on which the occurrence and 
course of phenomena depend, with special consideration for the two elements of deformation and time”. 
He established the influence of packing density on the friction coefficient in sand, water content and 
previous loading history in loams and clays as well. Analyzing the experience accumulated by his 
predecessors, K. Terzaghi assigned the leading role in the science of soils to the knowledge of the soil 
physical properties, suggesting “to rely more on the physical properties of the soil”. He wrote about “the 
need to build the structural mechanics of the soil based on the physics of the soil”. He stated that 
“knowledge of the physical properties of the soil gives us the opportunity to establish a causal relationship 
between physical causes and technical action in soil construction (landslide, sediment, failure of the 
foundation, etc.) and when we are not able to present this relationship completely in mathematical form”. 

In 1941, N.N. Maslov formulated the basic law of the relationship between the soil properties and 
their formation conditions (genesis). This law establishes that rocks that are identical in their composition, 
genesis, and occurrence conditions and have undergone the same subsequent changes have the same 
engineering and geological properties [2]. 

In 1955, A.K. Birulya reported on the influence of the soil granulometric composition (grain-size 
distribution, GSD), the composition of its colloidal part, density, humidity and temperature on the soil 
strength [3]. 

In 1967, G. Müller pointed out the influence of the processes of soil particles weathering and 
transportation, that is, the conditions of their formation, on their shape, which determines, in turn, the nature 
of the mutual adhesion of particles in the soil, the mechanism of their contact [4]. 

In 1971, M.N. Gol'dshtejn noted “the complexity and diversity of natural conditions that determine the 
soils mechanical properties” [5]. The author reported on the need “for engineering and geological studies 
to constantly reveal the relationship between the properties of soils and the conditions of their formation 
and occurrence, and the material accumulated in this way by survey organizations should be systematically 
generalized by specialists in the field of engineering geology”. It was also noted that “the physical and 
mechanical properties of those sedimentary rocks that are classified as non-rock soils are determined, 
firstly, by the relative content of particles of various minerals and the size of these particles, and secondly, 
by the properties of substances that fill the pores of the soil”. 

In 1975, F.J. Pettijohn reported on the influence of the formation (genesis), sand mineral composition, 
and the shape of its particles on the classification characteristics of sandy soil [6]. 

In 1981, L.M. Arya and J.F. Paris presented a model to predict the moisture characteristic of a soil 
from its particle-size distribution, bulk density, and particle density parameters [7]. Their model predictions 
for several soil materials show close agreement with the experimental data. 

B.J. Cosby et al. reported, “the name used for the soil in the description relates to the principal soil 
type and, in general, is based on particle size or the presence of organic material. The soil name thus 
provides valuable qualitative information concerning the physical and mechanical properties of the 
material” [8]. 
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In 1989, V.A. Korolev established on the basis of thermodynamics the basic laws of changes in the 
phase composition and phase ratios of dispersed soils, including during compressive compaction of soils, 
allowing to predict changes in a number of soil properties during these processes [9]. 

In 1990, E.C. Drumm et al. reported about the need to take into account the influence of the 
magnitude of cyclic deviator stress to characterize the soil subgrade and related soil-index properties and 
the moduli obtained from unconfined compression tests, to resilient modulus MR [10]. 

In 1994, D. Li and E.T. Selig developed a method that takes into account the influence of soil physical 
state, moisture content, stress state, and soil type on MR of compacted fine‐grained subgrade soils [11]. 

C.R.I. Clayton et al. reported on the influence of the soil particles size on its physical and mechanical 
properties and on the classification of soils based on their quantitative characteristics [12]. 

In 1996, S.F. Brown having studied pavement failure mechanisms reported about the influence of 
soil moisture and loading regime on the soil MR [13]. 

L.M. Arya et al. used particle-size data and form of soil particle in their investigation to estimate the 
soil-water characteristic [14]. 

In 2002, M.D. Fredlund et al. used information on GSD and the volume-mass properties of a soil for 
developing a procedure for estimating the soil-water characteristic curve [15]. They also reported about 
potential to use GSD as a basis for estimating soil behavior [16]. 

In 2004, N. Khoury and M.M. Zaman studied the influence of moisture changes on the MR of 
subgrade soils. They reported that MR-moisture content relationships for clayey soil exhibit a hysteretic 
behavior due to wetting and drying. A similar behavior was observed for sandy soil. The clayey soil was 
more susceptible than the sandy soil to moisture variation. They reported that changes in MR values and 
suction were influenced by the initial moisture content [17]. 

P.S.K. Ooi et al. suggested using data on stress state, soil type, soil structure, and the soil physical 
state to improve the model for predicting the soil MR [18]. 

In their studies, X. Yu et al. demonstrated that “the parameters affecting the shear strength therefore 
depend on the relative density, gradation, particle strength, particle size and shape, and degree of 
saturation of the specimen” [19]. 

In their experimental researches, J.H.S. Kung et al. demonstrated that the stress state, moisture 
content, and soil suction influenced the MR and the plastic strain [20]. Unsaturated subgrade MR reduces 
with increasing deviator stress and decreasing matric suction. The subgrade plastic strain increases as the 
deviator stress increases and the matric suction decreases. 

T. Wichtmann and Th. Triantafyllidis presented “a study of the influence of GSD curve on the small 
strain shear modulus Gmax of quartz sand with sub-angular grain shape” [21]. The article reported on the 
need to take into account the shape of soil particles when modeling the effect of granulometric composition 
on its characteristics. 

H. Nowamooz et al. carried out an experimental study of the repeated load response of a compacted 
clayey natural sand at different water contents. It has been proven that there is a strong link between the 
variation of the bearing capacity of low traffic pavement and the water content of the unbound layers [22]. 

In 2012, A. Ward reported that “particle size is a fundamental property of any sediment, soil or dust 
deposit. It influences a variety of other soil properties” such as natural isotope abundance, hydraulic 
properties, transport properties, thermal properties, reactive properties, and electrical properties [23]. 

N. Khoury et al. conducted several studies to develop relationships between the MR of subgrade 
soils and moisture conditions [24]. They reported that the relationships between MR and the moisture 
content exhibit a hysteretic behavior similar to the soil-water characteristic curve; specimens subjected to 
drying exhibited higher MR values than specimens subjected to wetting. MR values on the drying-wetting-
drying path are different from the corresponding values on the wetting-drying path. 

In 2013, T. Enomoto et al. reported about correlation between increasing of soil grain size and 
uniformity coefficient and Gvhd shear modulus by dynamic measurement and Gvhs shear modulus converted 
from Evs quasi-elastic vertical Young's modulus by static measurement [25]. 

In 2013, A. Shaqlaih et al. reported about modeling of the MR correlation with routine properties of 
subgrade soils and state of stress for pavement design application [26]. 
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C.W.W. Ng et al. investigated using a suction-controlled cyclic triaxial apparatus MR values of a 
subgrade soil under various stress and suction conditions. They reported that the measured MR is highly 
dependent on the stress state [27]. 

In 2014, Z. Han and S.K. Vanapalli proposed equations for predicting the MR of granular materials 
by using soil-water characteristic curve and GSD [28]. 

In 2014, N. Lu and M. Kaya reported that for soils, in addition to their well-known dependence on 
stress, elastic moduli (Young's modulus and shear modulus) depend on volumetric water content and/or 
matric suction, particularly for silty and clayey soils [29]. 

In 2015, G.G. Boldyrev and M.V. Malyshev noted that the physico-mechanical soils properties are 
the result of a complex and long-term interaction of physico-chemical conditions of rock formation, 
conditions of their occurrence, tectonic processes, regional geological processes associated with the action 
of gravity of water, gases, temperature fluctuations, biological factors. It was noted that the aerometric 
definitions data can be useful for assessing the physical and mechanical soils properties as well [30]. It was 
also noted that in the first approximation, to solve the problems of designing foundations, the angle of 
internal friction of loose soils can be determined from the correlation of data by statistical probing, relative 
density, and classification indicators. The shape of the particles, especially sandy soils, affects their strength 
properties. The soils genesis most often determines their basic physical and mechanical properties. 

In 2015, V.A. Korolev and S. Chzhan reported the results of their studies of the effect of the 
granulometric composition of a mixture of various sizes fractions on the indicators of physical and physico-
mechanical properties – density, porosity, internal friction angle, etc. As factors of influence, they 
considered GSD, addition density, mineral composition, humidity [31]. They found that for sandy and 
coarse-grained soils, the leading factors are GSD, particle shape and density of soil composition. 

I. Ishibashi and H. Hazarika reported on the influence of GSD of the soil and its origin on its 
properties: “since soil is an assemblage of particles, interlocking of those particles and their contact 
mechanism – in particular, for larger particles – determines many important mechanical properties of soils 
such as strength, rigidity, permeability, and compaction” [32]. They reported about soil characteristics 
correlation: from GSD curve, several key parameters can be obtained, such as the effective grain size 
(D10), the mean grain size (D50), the coefficient of uniformity (Cu), and the coefficient of gradation (Cg). 
Those parameters will be used in soil classification practices and will be correlated with many engineering 
properties of soils such as in compaction, permeability, etc. 

A.V. Mel’nikov and G.G. Boldyrev proposed to include the consistency index IL from the cone 
penetration tests (CPT) data for clay soils as an additional argument in the correlation equations for clay 
soils and the specific sleeve resistance fs – for sands to increase the determination accuracy of deformation 
modulus E [33]. They reported about decreasing the determination accuracy of the E with increasing 
content of grainy and clayey fractions in soils as well. 

In 2016, A.V. Gruzin et al. proposed a method for regulating the deformation properties of an 
incoherent dispersed soil based on the granulometric composition [34]. 

M. Goudarzy et al. conducted “a series of resonant column and compression wave velocity tests 
simultaneously on dense and loose specimens containing 0, 10, 20, 30, 40 and 50 gravimetric percentages 
of fine particles to measure the small strain moduli (Gmax, Mmax and Emax) of the mixtures. Mixture samples 
were prepared by the moist tamping method and subjected to isotropic confining pressure levels of 50, 100, 
150 and 200 kPa” [35]. The authors found that “the accuracy of the predicted maximum stiffness depends 
on the accuracy of the equivalent granular void ratio”. 

At the same time, T. Enomoto reported after series of drained triaxial compression tests that quasi-
elastic vertical Young's moduli, Evs, measured statically, were generally independent of maximum and 
mean particle diameters and the effects of fines content and particle angularity on the Evs values were not 
clear [36]. 

W.-T. Hong et al. reported on the particle size influence on the soil-water characteristic curve during 
cyclic tests [37]. 

In his experiments, M.A. Khasawneh showed a slight increase in MR values with an increase in 
confining pressure and a noteworthy decrease in MR accompanied by an increase in deviatoric stress [38]. 
Also based on the independent samples t-test analysis, it was revealed that soil type and water content 
caused statistically significant difference in MR values. 
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G.I. López researched grain size analysis methods and noted that granulometry is a basic analytical 
technique. Several sediment, soil, or material properties are directly influenced by the size of its particles 
as well as their shape (form, roundness, and surface texture of the grains) and fabric (grain-to-grain 
interrelation and grain orientation), such as texture and appearance, density, porosity, and 
permeability [39]. 

I. Dyka et al. presented the results of laboratory tests that verify the correlation between the grain-
size characteristics of non-cohesive soils and the value of the dynamic shear modulus [40]. 

F.F. Badhon and Md.A. Islam reported about studying the gradation effect on shear strength of sand 
with various water contents [41]. They performed several direct shear tests on reconstituted sand samples 
having different GSD (well graded (WG), gap graded (GG), and uniform graded (UG)) with varying water 
content of 15 % and 25 %. They have established that higher shear strength was obtained for GG soil as 
compared with the WG and UG. 

The research of P.H. Thinh et al. was focused on the correlation between compression index Cc and 
other properties of the marine dark grey lean clay layer. Their research results showed that the correlation 
between Cc and liquid limit is the tightest [42]. 

Y. Sun et al. reported about development of the new grading parameter that considered the size 
distribution of the entire aggregates to capture the grading-dependence of the shear stiffness of 
heterogeneous granular aggregates [43]. The grading parameter was found by them to increase with 
decreasing coefficient of uniformity and median particle size where higher shear stiffness was observed. It 
was also found that the proposed grading parameter exhibited an improved power-law correlation with the 
material constants from Hardin’s stiffness formula compared with the traditional grading parameter, the 
coefficient of uniformity. 

In their monograph, G.G. Boldyrev and I.H. Idrisov reported numerous empirical dependencies that 
allow determining the elastic shear modulus Gmax of coarse – grained and sandy soils based on data on 
the granulometric composition, particle shape, porosity coefficient, and initial stress conditions [44]. 

Y. Yao et al. used correlations between the physical properties of subgrade soils including the 
percentage passing through the No. 200 sieve (0.075 mm), plasticity index, liquid limit, dry density, and the 
regression coefficients of the new model [45]. 

In 2019, A.V. Gruzin proposed a method for regulating the characteristics of physical and mechanical 
properties of dispersed unconnected soil by granulometric synthesis [46]. 

In their research, B. Ghorbani et al. used the accurate determination of MR of pavement subgrade 
soils with its dependence on several influential factors, such as soil physical properties, applied stress 
conditions, and environmental conditions [47]. 

The report of C. Mendoza et al. presented the compression behavior of Bogotá’s diatomaceous soils. 
The investigations results have found several practical relationships for secondary consolidation, 
compressibility index, yield point, initial void ratio, and soil structure. These results show the importance of 
geological history for soil structure and secondary consolidation [48]. 

D. Watanabe et al. reported about GSD influence on degree of size segregation in granular flow 
simulations [49]. They confirmed that the inherent degree of the size segregation clearly affects the run-out 
distance. 

The previously reviewed articles analysis shows that the characteristics of the soil physical properties 
are most often used as independent variables (often called “predictors” or “features”), such as GSD, density, 
humidity, and genesis (formation). Many authors reported about the need to take into account influence of 
the soil stress state as well. Numerous authors most often considered as dependent variables (“responses”) 
the characteristics of the soils mechanical properties, namely the resilient modulus MR and shear modulus 
G. Evidently, such a choice is due to the practical relevance of these characteristics. 

1.2. Methods for Predicting the Soil Properties Characteristics 
There are many methods for developing correlation models for predicting the soil properties 

characteristics: analytical, empirical, statistical, etc. At present time, regression models (RMs) have become 
widely used. Such models make it possible to locally solve the problems of predicting the required soil 
characteristics by using independent predictors. The development of scientific basis for processing the 
results of partial definitions of the characteristics of the object under study is the one reason for the 
widespread RMs using. The second reason is the practical confirmation of the adequacy of the results of 
forecasting performed using RMs. According to the Interstate standard GOST 24026-80, regression 
analysis model is the dependence of the response on quantitative factors and errors of observation of the 
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response; regression analysis is a statistical method of analyzing and processing experimental data when 
only quantitative factors affect the response, based on a combination of the apparatus of the least squares 
method and the technique of statistical hypothesis testing. It is evident that the engineering and geological 
conditions uniqueness of each new construction site and the stochastic nature of the soils formation each 
time give rise to the need to develop new adequate RMs. The scientific approach to planning experimental 
studies of the soils characteristics allows us to comprehensively solve the problems of both the stochastic 
nature of the soil properties and the need to ensure the required accuracy of determining the desired 
characteristic. Many articles are devoted to problems related to the experimental studies planning, the RMs 
development and their practical use for predicting the characteristics of the soils properties. 

In his monograph, C.R. Hicks in detail described the basic concepts of experimental design, from the 
problem formulation to the results interpretation [50]. Author analyzed the advantages and disadvantages 
of various models and pointed out the need to establish a list of independent variables that can influence 
the dependent variables. The same principles and approaches are followed by the authors of [51]. The 
methods presented by them make it possible to develop a RM for a wide range of cases encountered in 
practice, including those related to the need for optimization. In [8] the authors reported about possibility to 
construct models that are based on continuous spatial variation in physical soil properties (such as sand or 
clay content) which provide even better simulations of soil moisture. In [10] the authors described and 
demonstrated two statistical models for 11 soils from throughout the state of Tennessee. Authors reported 
both models provide a good characterization of the response for the soils investigated. In [11] the authors 
proposed to quantify the soil physical state effect by combinations of two equations relating MR to moisture 
content. In [21] the authors reported the proposed correlations predict quite well most of the small strain 
shear modulus Gmax-values reported in the literature for sands with a sub-angular grain shape. In [26] the 
authors developed statistical models to correlate MR with routine properties of subgrade soils and state of 
stress. In 2014, a series of uniaxial compression tests were conducted on various compacted soils under 
varying volumetric water content [29]. The authors of this research proposed a simple power law to describe 
the dependence of Elastic moduli (Young's modulus and shear modulus) on volumetric water content for 
all types of soils. In [31] the authors have considered questions of modeling of sandy soils with specified 
physical and physical-mechanical properties using triangular diagrams represented by modified Feret 
triangles. X. Luo et al. reported in [52] about development and verification moisture-sensitive and stress-
dependent mechanistic-empirical models to predict soil MR. In [42] the authors revised Terzaghi and Peck 
formula and proposed a new formula most suitable for the correlation between compression index and 
liquid limit of the soil layer for geotechnical design in Vietnam and Cambodia. In [45] the authors reported 
about the development of RM to predict MR based on subgrade soil physical properties. Authors stated 
that MR can be predicted much more easily with physical parameters of subgrade soils rather than 
conducting triaxial tests. In 2019, A.V. Gruzin proposed computer program modeling the properties of a 
three-component system using the Gibbs method [53]. The program is designed to calculate using one of 
the four proposed regression equations and visualize the obtained numerical values of the characteristics 
of the physical and mechanical properties of dispersed noncohesive soil by constructing a 3D-surface as a 
function of three independent predictors (fractions of dispersed noncohesive soil). The author reported in 
[54] a percent error of less than 13.6 % for the physical properties characteristics and less than 2.6 % for 
the mechanical properties characteristics when predicting using the proposed model, based on Gibbs–
Roseboom method. In [47] the authors used the accurate determination of MR of pavement subgrade soils 
with its dependence on several influential factors, such as soil physical properties, applied stress conditions, 
and environmental conditions. 

The main RM advantage is an ease of understanding and using for predicting an algebraic equation 
based on basic statistical principles. At the same time there are some disadvantages of RM, such as certain 
difficulties in working with categorical variables, in correctly describing nonlinear correlations, in decreasing 
of the RMs reliability with the variables number increasing and some others. 

1.3. Predicting Models based on the Artificial Neural Networks 
Many modern studies have shown that the use of the artificial neural networks (ANNs) successfully 

solves such RM problems as working with categorical (classification) variables. 

An attempt at a systematic approach to the analysis of the prospects for the use of ANNs in civil 
engineering is undertaken by I. Flood and N.A. Kartam in [55, 56]. The authors reported neural networks 
advantage compared to conventional digital computing techniques, and procedural and symbolic 
processing. They noted that designing a successful approach for applying ANNs to a specific problem 
requires experience and imagination as well. E. Tutumluer and R.W. Meier attempted to train ANN 
constitutive model for computing the MR of gravels as a function of stress state and various material 
properties [57]. They reported the pitfalls inherent in the indiscriminate application of ANNs to numerical 
modeling problems. M. Shahin et al. analyzed many reports on the use of ANNs in engineering fields. They 
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reported that ANNs have been applied successfully for many geotechnical engineering areas, one of is the 
prediction of soil properties and behavior [58]. In 2004, they investigated four data division methods used 
for training ANNs. It was reported that the statistical properties of the data in the training, testing, and 
validation sets need to be taken into account to ensure that optimal model performance is achieved [59]. 
Y.M.A. Hashash et al. have developed self-learning in engineering simulation analysis framework, which 
extracts relevant soil behavior using boundary measurements of load and displacement, facilitated by use 
of ANN constitutive model [60]. M. Zaman et al. developed four different feedforward-type ANN models: 
linear network, general regression NN, radial basis function network, and multilayer perceptrons network 
(MLPN) [61]. In each of these models, the input layer consists of seven nodes, one node for each of the 
independent variables. The output layer consists of only one node – MR. The MLPN model with two hidden 
layers was found to be the best model for the present development and evaluation data sets. In 2012, 
M.D. Nazzal and O. Tatari developed the ANN models resulted in subgrade MR predictions with significantly 
higher accuracy than those estimated using RMs with the same input variables [62]. They reported the use 
of genetic algorithms in developing the ANN models resulted in enhancing their prediction significantly. 

S.-H. Kim et al. developed of an ANN model to estimate subgrade MR [63]. Authors reported the 
stress state and physical properties on resilient behavior of subgrade soils were successfully correlated 
with developed ANN model. H. Tao et al. used back propagation (BP) neural networks algorithm to simulate 
parameter model of soil GSD based on soil particle analysis tests, and used to simulate the function 
relationship between soil volumetric water content and matrix suction, which were calculated based on 
Arya–Paris model [64]. Authors reported about applicability and reliability of their proposed method. To 
achieve the specified accuracy, the authors used two hidden layer nodes of BP neural networks algorithm. 
S. Saha et al. developed ANN models to predict the coefficients of a stress- and moisture-dependent MR 
model for plastic and nonplastic soils [65]. The developed ANN models consist of three layers, seven input 
variables, ten hidden neurons, and one output variable. Their models are the three-layered ANNs. The 
authors did not recommend ANNs for use as a prediction tool for the values that are out of the range of 
training dataset. The authors reported a good prediction accuracy of the developed models results in better 
estimation of the MR of base materials – the R2 value between the measured and predicted validation MR 
values was 0.8. In 2022, I.V. Ofrikhter et al. reported on the successful use of ANN in solving the problem 
of predicting soil properties [66]. As a result of their research, obtained ANN predicts the angle of friction 
and specific cohesion of clay soil with reasonable accuracy. The authors proposed the topology of the ANN 
and carried out the comparison of the estimation accuracy with the existing equations. 

ANNs using has become a new stage in the development of RMs for predicting the soils properties 
characteristics. A review of recent publications confirms this fact. 

1.4. Soil Information Model 
The previously performed studies analysis allows us to conclude about the complexity of the task of 

the soil physical and mechanical properties characteristics predicting. When predicting responses 
(dependent variables), there are different approaches in the selection of influence factors (independent 
variables). Some of authors mention both quantitative and classification factors as well [2, 6, 30]. Evidently, 
for correct statistical processing of laboratory results, it is necessary to establish type of probability 
distribution. Statistical processing of laboratory research results, as a rule, includes the search for and 
exclusion from consideration of the so-called “gross errors”. Previously performed studies do not provide 
an explanation for such a phenomenon as “gross errors” during the research data statistical processing. 
Obviously, the reason for the presence of so-called “gross errors” is ignoring the influence of certain factors 
(features) that are not included in the developed RM. The solution of this problem is seen in the 
development and use of a soil information model based on RM developed using ANNs, since, according to 
the Interstate standard GOST 24026-80, the classical regression analysis model is the dependence of the 
response (dependent variables) on continuous quantitative factors (independent variables) and response 
observation errors (error terms). 

Soil information model (SIM) is an object-oriented electronic (virtual) parametric model that digitally 
represents the characteristics of the soil (or its separated components) in the form of a set of information-
rich elements (features, parameters, characteristics – continuous quantitative and discrete classification) 
for various external conditions. 

It should be noted that in addition to solving the problem of predicting the soil properties 
characteristics, an important advantage of SIM is its open architecture. This makes it possible to develop 
SIM by adding to it both new research results and new influence factors (independent variables). It is 
expected that such SIM will allow predicting soil characteristics using fewer soil samples in comparison with 
existing methods. This means that SIM using will lead to a reduction of material expenses and waste of 
time when conducting engineering and geological surveys while maintaining the reliability and necessary 
accuracy of the obtained characteristics. 
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Thus, the main purpose of the current study is to develop a method for predicting the soil properties 
characteristics based on the correlation between the various soil properties characteristics – continuous 
quantitative and discrete classification and on ANN using. 

To achieve this goal, the following tasks were solved: 

• the list of independent soil properties characteristics was determined, the main 
disadvantages of existing methods for predicting the soil properties characteristics were 
identified, the ANN using possibility to predict the soil properties characteristics was 
determined, based on the analysis of previously performed studies; 

• the laboratory studies of soil samples were carried out in order to determine the values of 
independent characteristics of soil properties and the necessary information database for 
ANN training and testing was formed; 

• SIM, based on a trained ANN, was developed for predicting the soil properties characteristics 
and the accuracy of predicting the soil properties characteristics on its base was evaluated. 

2. Materials and Methods 
2.1. Laboratory tests 

According to the Russian Code of Practice SP 22.13330.2016, the calculation of the engineering 
construction foundation for the second group of limit states (by deformation) using the deformation modulus 
E is always performed, with the exception of three trivial cases. Therefore, E is selected as a response 
(dependent variable) of the developed SIM. The availability of proven methods and certified laboratory 
equipment can reduce the risks of methodological and operational errors in determining E. 

2.1.1. Experiment design 
The minimum number of soil samples (≥ 6) was determined for each combination of the specified 

independent soil characteristics (variables, factors), according to the Russian Code of Practice 
SP 22.13330.2016. As independent soil characteristics, the following were selected: soil genesis, static 
normal stress σ, soil sample granulometric composition, its initial density ρ and moisture w. The test 
program developed in accordance with the Interstate standard GOST 12248.4-2020 is shown in Fig. 1. 

 
Figure 1. Program of the soil compressibility laboratory tests. 

The maximum σ value is determined by the operating conditions for the bases of vertical steel tanks 
for storing oil and its refined products [67].Compression tests are cyclical in nature and consist of five 
stages. The number of loading stages shown in Fig. 1 is due to the need to study the effect of the soil initial 
density ρ on the deformation modulus E. 

Statistical processing of the results of laboratory studies for each combination of the specified 
independent soil characteristics and for each static normal stress σ stage was performed in accordance 
with the methods presented in [50, 51]. Statistical processing of the results of laboratory soil samples tests 
included the following main stages: verification of the laboratory data to follow normal distribution, exclusion 
of “gross errors” of measurement results, determination of the normative soil characteristic value and its 
root-mean-square deviation (RMSD). 
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2.1.2. Materials 
Sand was chosen as a dispersed incoherent soul because it is necessary to correctly change the 

soil GSD and to provide the required and controlled values of its independent characteristics for all test 
samples. Alluvial sand of the Irtysh River floodplain was used for laboratory studies. The initial dry sand 
was separated by the sieve method into grain size fractions, which were then used to prepare test-samples 
(Table 1) for laboratory studies in accordance with the research program. The laboratory equipment used 
for compression tests limited the maximum particle size of the soil test samples. Therefore, fractions with 
a particle size of more than 10 mm were not used in the studies. The mass fraction of such particles in the 
original sand was less than 0.2 %. 

Table 1. Sand test-samples used in the present study. 
Sand 

sample ID 
The soil mass fraction as a function of the sieve mesh size Number of 

samples 5.0 mm 2.0 mm 1.0 mm 0.5 mm 0.25 mm 0.1 mm Pan 
01       1.0 35 
02      1.0  45 
03     1.0   30 
04    1.0    65 
05   1.0     50 
06  1.0      35 
07 1.0       130 
08  0.5 0.5     30 
09 0.5  0.5     40 
10 0.5 0.5      40 
11 0.34 0.33 0.33     105 
12 0.2 0.4 0.4     50 
 

Samples dimensions are 25 mm in height and 78 mm in diameter. Fig. 2 illustrates examples of sand 
test samples with different granulometric composition. 

   
(a) ID 08   (b) ID 09   (c) ID 10 

   
(d) ID 11    (e) ID 12 

Figure 2. Sand mix test samples. 
The different mineralogical composition of the sand test-samples did not allow for the same values 

of the initial values of its density ρ. Therefore, the actual value of ρ was determined before each test. The 
results of determining ρ for various stages of cyclical compression tests are shown in Fig. 3 where ave is 
the arithmetic mean, s is RMSD, max is the maximum value ρ, min is the minimum value ρ. The values of 
the initial density ρ were in the range of 1.30–1.64 g/cm3 as the measurements showed. 
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Figure 3. Samples initial density ρ. 

In addition, taking into account the complex nature of the sand humidity w influence on its 
deformation properties [68], it was decided to limit the studies to air-dry sand, the humidity w of which was 
controlled before laboratory tests and was in the range 0.001÷0.0013. 

2.1.3. Laboratory equipment 
Fig. 4 illustrates universal automated ASIS test complex for conducting compressibility laboratory 

tests. 

 
Figure 4. ASIS – equipment for soil compressibility laboratory tests. 
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The main elements of the ASIS are a loading device (1), a compression oedometer (2), specialized 
software for computer-based automation of the tests processes (3). The ASIS software regulates the 
amount and duration of soil sample loading in accordance with the compression test program shown in 
Fig. 1. The current time, the amount of soil sample loading, and the soil sample deformation are recorded 
during compressibility laboratory tests. 

2.2. Soil Information Model 
As it was noted earlier, the presence of not only numerical but also classification features among the 

independent variables does not allow predicting the soil properties characteristics within the framework of 
the classical RM. Sand formation (genesis), for example, is the one of such classification features. It is 
obvious that further research will also solve this problem since, at a minimum, the classification concept of 
the soil genesis should include the soil mineralogical composition, the particles shape, that is, 
characteristics having non-classification quantitative representation. But at this stage of investigations, such 
detail would obviously significantly complicate the planned research. Thus, since there are classification 
features among the independent variables, the prediction of the soil properties characteristics can be 
implemented using SIM based on ANN. 

Previous studies review and analysis have shown that ANNs are widely used to solve engineering 
forecasting problems [55–66]. There are various software approaches for ANN implementation and 
subsequent modes of its development. The choice was made in favor of the “open source deep learning 
framework for Python – Keras” due to its simplicity, sufficient number of training materials and accessibility 
[69, 70]. Work with ANNs starts with its algorithm development. The ANN algorithm used in the research 
included the following stages of working with the source data: loading and subsequent separation of data 
into independent variables (features) and response, normalization of the source data, their random 
permutation and subsequent division into three groups – training, control-verification, and test datasets. 
The training dataset is needed to train ANN. The control and verification dataset are used for the current 
control of ANNs training. The test dataset is to evaluate the trained ANN. 655 sand samples were used in 
the studies, for which 5895 different measurements were performed. In accordance with the 
recommendations [69], 60 % of the data (3537 measurement results) were used for ANN training, 20 % 
(1179) – for its current verification, the remaining 20 % (1179) – for evaluation of the trained ANN. The next 
stage was the ANN model development. A sequential model consisting of 8 layers was used as ANN model: 
12 neurons in the input layer, 64 neurons in the hidden layers, and 1 neuron in the output layer. ANN 
training is an important stage. “Supervised learning” was chosen from the existing methods of ANN training 
[69]. “Supervised learning” assumes that there is a target vector representing the desired output for each 
input data vector. Together they are called a training pair. This choice is due to the implementation simplicity 
and the operational ability to evaluate the results of trained ANNs. The model was trained for about 1200 
epochs. As a loss function there was used mean squared error (MSE), widely used in regression analysis, 
which calculates the square of the difference between the predicted and target values [69]. Program control 
was carried out to prevent ANN overfitting (overtraining) during the ANN training process. At the final stage, 
the trained ANN was tested on a test dataset to assess the accuracy of response prediction. 

3. Results and Discussion 
3.1. Laboratory Studies 

During laboratory studies, 655 soil samples were tested. 5895 data vectors were obtained, including 
independent variables (features) and response. The results of the laboratory studies is presented in Fig. 5. 

  
Figure 5. Soil samples deformation modulus E changing during compression tests. 
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Nonlinear nature of the change of the deformation modulus E of sand samples, depending on the 
number of stages of their loading, was established during the processing the compression tests results. 
Minimal changes of the deformation modulus E were observed for the sample ID 03. After the second stage 
of loading, the deformation modulus E of the sample ID 03 increased by 1.89 times (from 6.92 MPa to 
13.10 MPa), after the third – by 1.06 times (from 13.10 MPa to 13.60 MPa), after the fourth – by 1.01 times 
(from 13.90 MPa to 14.08 MPa), after the fifth – by 1.02 times (from 14.08 MPa to 14.39 MPa). Thus, after 
five loading stages, the deformation modulus E of the sample ID 03 increased by 2.08 times. The maximum 
changes in the deformation modulus E were observed for the sample ID 01. After the second stage of 
loading, the deformation modulus E of the sample ID 01 increased by 7.05 times (from 1.75 MPa to 
12.34 MPa), after the third – by 1.05 times (from 12.34 MPa to 12.95 MPa), after the fourth – by 1.01 times 
(from 12.95 MPa to 13.12 MPa), after the fifth – by 1.01 times (from 13.12 MPa up to 13.28 MPa). Thus, 
after five loading stages, the deformation modulus E of the sample ID 01 increased by 7.58 times. The 
performed studies have established the nonlinear nature of the influence of the granulometric composition 
on the deformation modulus E of sand. 

The results of deformation modulus E determining for various stages of cyclic loading are shown in 
Fig. 6 where ave – arithmetic mean, s – standard deviation, max – maximum value, min – minimum value. 

  

  

 
Figure 6. Soil composition influence on deformation modulus E. 

As can be seen from the laboratory data, the minimum values of the coefficient of variation (CV) of 
the deformation modulus E for all loading stages were obtained for the sample ID 08 – from 0.0788 to 
0.1025. The maximum CV values were obtained for samples ID 06 and ID 07 – from 0.2899 to 0.3765. At 
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the same time, the minimum CV values of the initial density ρ were obtained for samples ID 11 and ID 12 
– from 0.0023 to 0.0034. The maximum CV values were obtained for samples ID 01 and ID 09 – from 
0.0194 to 0.0267 (Fig. 3). Thus, during the conducted studies there was not revealed a significant influence 
of the precision and repeatability of the determinations of the initial density values on the precision and 
repeatability of the determinations of the deformation modulus E. It was established that CV of the initial 
density ρ values is, as a rule, ten times less than the CV of the deformation modulus E. In the studied range 
of normal stress, there is established the linear nature of the influence of the soil sample initial density ρ on 
its deformation modulus E. 

According to the Interstate standard GOST R 8.736-2011 for samples ID 07 and ID 11, there was 
verified the hypothesis that the results of independent testing of the initial density ρ and the deformation 
modulus E follow the normal probability distribution law. Initially, according to the Interstate standard GOST 
20522-2012, for the samples ID 07, it was established that for all loading (normal stress) stages, the soil 
initial density ρ dataset is homogeneous (CV ≤ 0.15). At the same time, the soil deformation modulus E 
dataset for the first stage of loading is homogeneous (CV ≤ 0.3), for the other remaining loading stages it 
is inhomogeneous. For sample ID 07, 5 soil samples were excluded from 26 soil samples as having “gross 
errors”. After excluding “gross errors”, all the remaining datasets on their soil deformation modulus E and 
the initial density ρ were homogeneous. Table 2 presents the results of verifying the hypothesis that the 
results of independent testing of remaining 21 samples follow the normal probability distribution law at a 
significance level q over 5 %. 

Table 2. Sand samples ID 07 and ID 11 testing results. 

Sand 
sample ID 

Soil 
characteristics Stage 

Initial 
number of 
samples 

Allowed 
number of 
samples 

Mean s Follows the normal 
distribution 

ID 07 

Initial density ρ 

1 26 26 1.360 0.020 Yes 
2 26 25 1.393 0.022 No 
3 26 25 1.395 0.022 Yes 
4 26 23 1.399 0.022 No 
5 26 24 1.398 0.023 No 

Deformation 
modulus E 

1 26 26 5.138 1.490 No 
2 26 25 15.652 3.199 No 
3 26 25 16.688 3.468 No 
4 26 23 16.319 2.376 No 
5 26 24 17.120 3.048 No 

ID 11 

Initial density ρ 

1 21 21 1.555 0.004 No 
2 21 20 1.574 0.007 Yes 
3 21 19 1.575 0.007 Yes 
4 21 20 1.577 0.008 Yes 
5 21 20 1.578 0.008 Yes 

Deformation 
modulus E 

1 21 21 7.100 1.503 Yes 
2 21 20 15.466 2.654 Yes 
3 21 19 15.675 2.214 Yes 
4 21 20 16.435 2.838 Yes 
5 21 20 16.777 3.058 Yes 

 

The hypothesis that the remaining initial density ρ dataset follows the normal probability distribution 
law was confirmed only for the first and third normal stress stages. The hypothesis that the remaining 
deformation modulus E dataset follows the normal probability distribution law was not confirmed for any 
normal stress stage. 

For the samples ID 11, it was established that for all normal stress stages, the soil initial density ρ 
dataset is homogeneous (CV ≤ 0.15). For all normal stress stages the soil deformation modulus E dataset 
is homogeneous (CV ≤ 0.3) as well. However, according to the Interstate standard GOST R 8.736-2011, 3 
soil samples were excluded from 21 soil samples ID 11 as “gross errors”. Table 2 presents the results of 
verifying the hypothesis that the results of independent testing of remaining 18 samples follow the normal 
probability distribution law at a significance level q over 5 %. The hypothesis that the remaining initial 
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density ρ dataset follows the normal probability distribution law was not confirmed only for the first normal 
stress stage. The hypothesis that the remaining deformation modulus E dataset follows the normal 
probability distribution law was confirmed for all normal stress stage. 

Thus, the obtained research data demonstrate a limited possibility of using methods for processing 
measurement results based on the hypothesis that the measurement results follow the normal distribution 
for such characteristics of soil properties as the sand initial density ρ and its deformation modulus E. The 
impossibility of developing adequate regression models for these characteristics is an important 
consequence of this conclusion. 

3.2. Prediction based on SIM 
The developed SIM on the basis of a trained ANN made it possible accuracy evaluation of the soil 

deformation modulus E predicting. The remaining 20 % of the dataset (test array) – 1179 laboratory 
measurement results were used for this purpose. It should be particularly noted that ALL (5895, without 
any exceptions) measurement results of soil samples laboratory tests were used for the training, verification 
and testing purposes. The results of SIM testing are presented in Fig. 7. The test array contains data of 
different samples under different normal stress. 

 
Figure 7. Prediction of the deformation modulus E using SIM. 

The percent error (PE) is proposed to use as a characteristic for determination the accuracy 
predicting. The PE values for various normal stresses, which allow us to estimate the accuracy of 
deformation modulus E predicting using a SIM, are presented in Fig. 8. 
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Figure 8. PE in predicting the deformation modulus E using SIM  

for various normal stress conditions of soil samples. 
PE was in the range from –257.81 to 58.66 %, as can be seen from the data presented in Fig. 8. 

This maximum range (316.47 %) is for unloaded soil samples. For normal stress of 25 kPa, PE range is 
129.56 %, for 50 kPa – 29.47 %, for 75 kPa – 43.61 %, for 100 kPa – 55.18 %, for 125 kPa – 39.02 %, for 
150 kPa – 19.10 %, for 175 kPa – 55.31 %, for 180 kPa – 63.80 %. Fig. 9 shows the PE values for various 
normal stress conditions. 

 
Figure 9. Prediction results accuracy. 

The maximum absolute PE value (12.55 %) is for unloaded soil samples. The minimum absolute PE 
value (2.54 %) is for normal stress σ = 150 kPa. Mean absolute percent error (MAPE) is 5.05 %. The results 
of test array predicting using SIM are presented in Table 3. 
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Table 3. Results of the test array prediction. 
Normal stress 

σ, kPa 
Percent error δ, % Coefficient of 

determination R2 
Min Max Mean Mean absolute  

0 –257.81 58.66 -2.97 12.55 0.8265 
25 –97.46 32.10 -2.91 9.06 0.9403 
50 –16.06 13.41 0.29 3.97 0.9810 
75 –18.21 25.40 0.72 3.59 0.9902 

100 –19.32 35.87 0.81 3.35 0.9873 
125 –26.93 12.08 1.19 3.56 0.9910 
150 –8.57 10.53 0.87 2.54 0.9931 
175 –8.34 46.98 1.24 2.96 0.9942 
180 –9.71 54.09 2.49 3.86 0.9913 

For all dataset –257.81 58.66 0.19 5.05 0.9684 
 

Analysis of the values in Table 3 shows that the prediction accuracy characteristics (MAPE and 
coefficient of determination R2) obtained on base SIM correspond to values of the same characteristics 
obtained by another researches [65, 66]. In current study the minimum value of coefficient of determination 
R2 = 0.8265 is for unloaded soil samples (normal stress σ = 0 kPa), for normal stress σ = 25 kPa – 0.9403, 
for others – more than 0.98. For all dataset the coefficient of determination R2 = 0.9684. The reason for the 
low coefficient of determination values is the greater and stochastic effect of the friction forces between the 
soil particles on the soil density for small values of normal stress (≤ 25 kPa). 

4. Conclusions 
The results of the soil properties characteristics prediction using SIM, the independent parameters 

of which are continuous quantitative and discrete classification features, are presented in the article. The 
following conclusions are drawn on the basis of laboratory studies outcomes: 

1) the possibility of the soil deformation modulus prediction based on its genesis and physical 
properties characteristics is confirmed; 

2) independent variables sufficient set – soil characteristics: genesis, normal stress, granulometric 
composition, initial density and humidity – has been confirmed to determine soil deformation 
modulus; 

3) the possibility of SIM using based on a trained ANN to predict the soil properties characteristics, 
including cases when classical regression models using is impossible, has been confirmed; 

4) the SIM using experience shows that small amounts of data (less than 10000 measurement results) 
for training ANN allow us to obtain satisfactory results in the soil properties characteristics 
predicting; 

5) the SIM using allows to abandon the deformation modulus direct studies, and to determine it 
indirectly using SIM without losing the determination accuracy, minimizing material and time 
expenses. 
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