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Abstract. The article is devoted to the development of machine learning models for predicting the ultimate 
load during central compression of concrete-filled steel tubular (CFST) columns with square cross-section. 
Artificial intelligence is currently widely used in data processing and analysis, including data on the load-
bearing capacity of building structures. The use of machine learning models can become an alternative to 
the empirical formulas from current building design codes. The models built by artificial neural networks are 
based on four different architectures: cascade forward backpropagation network, Elman neural network, 
feedforward neural network and layer recurrent neural network. The models were trained on synthetic data 
obtained as a result of finite element analysis of CFST columns in a simplified formulation with varying input 
parameters. The input parameters of the models were the outer cross-sectional size, wall thickness, 
concrete compressive strength and steel yield strength. The difference from previous works is the large 
size of the dataset, which amounts to 22308 samples. This dataset size allows to cover the entire currently 
possible range of changes in input parameters. The trained models showed high performance in terms of 
mean squared error. The correlation coefficients between predicted and target values are close to one. The 
developed models were also tested on experimental data for 123 samples presented in 15 different works. 
The best agreement with experimental data was obtained using the layer recurrent neural network model. 
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1. Introduction 
In modern construction, there is a tendency to increase the height of structures and floor spans. This 

requires the use of columns with high load-bearing capacity at small cross-sections. One solution to this 
problem is the use of concrete-filled steel tubular (CFST) structures [1–3]. The reason for the high efficiency 
of CFST structures lies in a number of positive qualities that they possess. This is the plastic nature of 
destruction even when using high-strength concrete [4–6], no need for formwork, an increase in the load-
bearing capacity of concrete due to its lateral compression with a steel shell [7–9], etc. 

Russian set of rules 266.1325800.2016 “Composite steel and concrete structures. Design rules” 
contains calculation methods only for columns of circular cross-section. At the same time, square cross-
section CFST columns are widely used [10–12], for which there are no design recommendations in the 
current Russian design codes. 
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Most of the existing calculation methods are based on an empirical approach [13–15], the calculation 
dependencies used in this case will be applicable only for a specific design solution (for example, the 
absence of reinforcement of the concrete core) and the type of concrete. One of the reliable ways to predict 
the load-bearing capacity of CFST structures is finite element modeling [16–18]. However, this approach 
requires analysis in a three-dimensional physically nonlinear formulation, which leads to large time costs 
for preparing the calculation model and the calculation itself [19]. 

Currently, machine learning algorithms are widely used for determining the load-bearing capacity of 
building structures along with analytical and numerical algorithms [20]. 

The authors of [21] proposed an interpretable machine learning method based on the adaptive 
surrogate model with adaptive neuro-fuzzy inference system (ANFIS). To train the model, the results of 99 
central compression tests on square CFST columns were collected from various sources. The quality of 
training was assessed using 11-fold cross-validation. 

In [22], an artificial neural network (ANN) model was built to determine the load-bearing capacity of 
CFST columns with square and circular cross-section under central and eccentric compression. The data 
from 3091 full-scale experiments were used to train the model. Of these, 895 experiments were conducted 
for centrally compressed columns of square cross-section. 

In [23], the training dataset included 1022 square-section samples, of which 685 samples were short 
columns and 337 were slender columns. The prediction results were compared with calculations according 
to Eurocode 4. 

The authors of [24] considered the joint use of gene expression programming and ANNs for 
predicting the load-bearing capacity of CFST columns with circular and square cross-section. The 
experimental base for training included data from 993 samples. To validate the results, comparisons were 
made with design codes from six different countries. 

The authors of the listed works claim that surrogate models based on machine learning have an 
advantage over the formulas from design codes. However, ANNs and other machine learning models are, 
in fact, multidimensional interpolation of data, and provide reliable results only in the range of parameters 
in which they were trained. 

Since conducting full-scale experiments is a rather expensive and time-consuming process, some 
researchers use synthetic data obtained from finite element modeling to form a training dataset. An example 
of such an approach is the work [25]. Since the modeling is performed in a three-dimensional setting, which 
is also a rather labor-intensive process, the final volume of the training dataset remains small. As a rule, 
the volume of the training dataset does not exceed 1000 samples, which does not allow covering the entire 
possible range of changes in material characteristics and geometric parameters. 

The purpose of this work is to develop the machine learning models for predicting the load-bearing 
capacity of centrally compressed square-section CFST columns, which could correctly predict the ultimate 
load over the entire possible range of changes in the characteristics of steel and concrete, as well as the 
geometric characteristics of profiled square-section pipes. The size of the training dataset in this article is 
22308 samples, which is tens of times larger than the size of the datasets in previous works. 

2. Materials and Methods 
This article considers short columns, for which deflections do not lead to any significant increase in 

the eccentricity of the axial force. The following values were chosen as input parameters of ANNs: cross-
sectional size a (mm); pipe wall thickness t (mm); pipe material yield strength Ry (MPa); ultimate 
compressive strength of concrete (prismatic strength) Rb (MPa). At the output, the ANN must predict one 
parameter, which is the value of the ultimate load Nult. 

Parameters, such as the modulus of elasticity of concrete, its tensile strength, Poisson’s ratio, as well 
as the modulus of elasticity of steel, to a certain extent also influence the load-bearing capacity of CFST 
columns. However, they were not included among the input parameters. For the modulus of elasticity of 
concrete and its tensile strength, this is explained by the fact that they are in correlation with the prismatic 
compressive strength [26, 27]. The initial Poisson’s ratio of ordinary concrete (under elastic work of material) 
varies from 0.16 to 0.20 [28]. When training the models, the value presented in the Russian design codes 
for the reinforced concrete structures was taken (v = 0.2). As for the modulus of elasticity of steel, it also 
has a small spread from 196 to 222 GPa [29], and when training the models, it was taken equal to 200 
GPa. 

The supervised learning method was used to train the models. Training was carried out on synthetic 
data obtained by finite element modeling using a simplified method given in [30]. The essence of this 
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technique is to reduce the three-dimensional problem of determining the stress-strain state to a two-
dimensional one based on the hypothesis of plane sections. Rectangular finite elements were used to 
model the concrete core, and one-dimensional finite elements were used to model the steel shell. The 
rounding of corners in steel profile pipes was not taken into account in the calculations. A quarter of the 
section was considered due to the symmetry of the problem. The side size of the concrete finite element 
was taken to be 1/20 of the size of the concrete core. The physical nonlinearity of concrete was specified 
by the equations of the deformation theory of concrete plasticity by G.A. Geniev as in [30]. Steel was 
considered an ideal elastoplastic material. The Huber–Mises–Henky criterion was used as a yield criterion 
for steel. The following formulas were used as correlation relationships between the prismatic strength of 
concrete Rb, tensile strength Rbt and the initial modulus of elasticity of concrete E0 [31]: 
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The dataset containing 22308 numerical experiments was generated1. The range of changes in 
parameters a and t (Table 1) corresponded to the current Interstate standard GOST 30245-2012 “Steel 
bent closed welded square and rectangular section for building. Specifications”. For each value of a from 
the range, the calculation was performed with 11 values of wall thickness from tmin to tmax with a uniform 
step. The concrete compressive strength varied from 10 to 120 MPa in increments of 10 MPa, the yield 
strength of steel varied from 220 to 840 MPa in increments of 62 MPa. A fragment of the training dataset 
is shown in Table 2. 

Table 1. Values of parameter a, as well as ranges of variation of parameter t when constructing 
a training dataset. 

a, mm tmin, mm tmax, mm 
100 3 8 
120 3 8 
140 4 8 
150 4 8 
160 4 8 
180 5 16 
200 5 12 
250 6 12 
300 6 22 
350 6 22 
400 7 22 
450 7 22 
500 8 22 

 
Table 2. Fragment of the training dataset. 

No. a, mm t, mm Ry, MPa Rb, MPa Nult, kN 
1 100 3.00 220 10 349.71 
2 100 3.45 220 10 385.27 
3 100 3.91 220 10 420.72 
4 100 4.36 220 10 455.76 
5 100 4.82 220 10 490.38 
6 100 5.27 220 10 524.59 
7 100 5.73 220 10 558.38 
8 100 6.18 220 10 591.76 
9 100 6.64 220 10 625.31 

 
1 The dataset is available at the following link: https://disk.yandex.ru/i/y2y0eTlaYox3Rw.  

https://disk.yandex.ru/i/y2y0eTlaYox3Rw
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No. a, mm t, mm Ry, MPa Rb, MPa Nult, kN 
10 100 7.09 220 10 657.89 
11 100 7.55 220 10 690.07 
12 100 8.00 220 10 722.50 
13 100 3.00 282 10 422.21 
14 100 3.45 282 10 468.22 
15 100 3.91 282 10 514.09 
16 100 4.36 282 10 559.41 
17 100 4.82 282 10 604.20 
18 100 5.27 282 10 648.45 
19 100 5.73 282 10 692.81 
20 100 6.18 282 10 736.03 
21 100 6.64 282 10 778.72 
22 100 7.09 282 10 821.63 
23 100 3.00 220 10 349.71 
... ... ... ... ... ... 

22286 500 9.27 778 120 42107.78 
22287 500 10.55 778 120 43721.33 
22288 500 11.82 778 120 45326.32 
22289 500 13.09 778 120 46878.91 
22290 500 14.36 778 120 48465.31 
22291 500 15.64 778 120 49996.36 
22292 500 16.91 778 120 51564.20 
22293 500 18.18 778 120 53073.77 
22294 500 19.45 778 120 54623.09 
22295 500 20.73 778 120 56111.24 
22296 500 22.00 778 120 57642.06 
22297 500 8.00 840 120 40922.32 
22298 500 9.27 840 120 42593.22 
22299 500 10.55 840 120 44248.28 
22300 500 11.82 840 120 45887.56 
22301 500 13.09 840 120 47511.10 
22302 500 14.36 840 120 49118.97 
22303 500 15.64 840 120 50759.78 
22304 500 16.91 840 120 52338.05 
22305 500 18.18 840 120 53900.79 
22306 500 19.45 840 120 55501.41 
22307 500 20.73 840 120 57089.77 
22308 500 22.00 840 120 58609.37 

 
Several options were considered for the architecture of the ANN: cascade forward backpropagation 

network, Elman neural network, feedforward neural network and layer recurrent neural network. For each 
option, the number of hidden layers was taken to be one, the number of neurons in the hidden layer was 
taken to be 10, and the hyperbolic tangent was used as the activation function. ANNs with one hidden layer 
are among the simplest ones, but as will be shown below, one hidden layer is enough for high quality 
prediction with a sufficient volume of training dataset. ANN models were implemented in MATLAB software 
(Neural Network Toolbox). The architecture of the ANNs used is shown schematically in Fig. 1. 

Levenberg–Marquardt algorithm was used to train the models. During training, the dataset was 
randomly divided into three parts: Training, Validation and Test in proportions of 70%, 15% and 15%, 
respectively. The value of the mean squared error (MSE) was chosen as a metric for the quality of training: 
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where n is the volume of the training dataset; Yi are the ultimate load values predicted by the neural network; 
Ti are the target values of the ultimate load. 

 
Figure 1. Architecture used for ANN: a) cascade forward backpropagation network; b) Elman 

neural network; c) feedforward neural network; d) layer recurrent neural network. 
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3. Results and Discussion 
Table 3 shows the MSE values obtained as a result of models training, calculated from the 

“Validation” part of the dataset. The best results were obtained using the Elman architecture neural network. 
Training performance graph for this model is shown in Fig. 2. Fig. 3 represents regression plot for the Elman 
neural network model. The x axis corresponds to the target values of the ultimate loads T, and y axis 
corresponds to the predicted values Y. Most of the points on the graphs fit on the straight line Y = T. The 
correlation coefficients R between target and predicted values are close to 1, and for the entire sample R 
is equal to 0.99997. For ANN models built on cascade forward backpropagation network, feedforward 
neural network and layer recurrent neural network architectures correlation coefficients are also close to 1. 

Table 3. MSE values obtained as a result of training ANN models. 
Model MSE 

Cascade forward backpropagation network 12635.45 
Elman neural network 6624.35 

Feedforward neural network 9954.31 
Layer recurrent neural network 7728.31 

 

 
Figure 2. Training performance graph for Elman neural network. 
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Figure 3. Regression plot for Elman neural network. 

 
After training on synthetic data, the developed ANN models were tested on experimental data 

presented in [32–46]. Dimension a varied from 70 to 500 mm, wall thickness t varied from 0.7 to 16 mm, 
concrete compressive strength Rb varied from 21 to 121.6 MPa, and yield strength of steel varied from 228 
to 835 MPa. The test results are given in Table 4. ANN 1 are the results obtained using cascade forward 
backpropagation network, ANN 2 corresponds to Elman neural network, ANN 3 corresponds to feedforward 
neural network and ANN 4 corresponds to layer recurrent neural network. Table 4 shows that despite the 
different architecture, the results predicted by the four models are quite close to each other. Table 5 shows 
the average values of the ratio of predicted ultimate loads Npredict to experimental ones Nexp, the maximum 
and minimum values of the ratio Npredict/Nexp, standard deviations of the value Npredict/Nexp, as well as the 
coefficients of variation for each of the ANN 1–ANN 4 models. 
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Table 4. Results of testing the developed models on experimental data. 

No. Sample a, mm t, mm Ry, MPa Rb, 
MPa 

Nult, kN 
experime

nt ANN1 ANN2 ANN3 ANN4 

Ouyang, Y., Kwan, A.K.H. (2018) [32] 
1 CR4-A-2 148 4.38 262 25.4 1153 1213 1166 1187 1178 
2 CR4-A-4-1 148 4.38 262 40.5 1414 1501 1407 1453 1450 
3 CR4-A-4-2 148 4.38 262 40.5 1402 1501 1407 1453 1450 
4 CR4-A-8 148 4.38 262 77 2108 2135 2059 2071 2064 
5 CR4-C-2 215 4.38 262 25.4 1777 2092 2052 2071 2005 
6 CR4-C-4-1 215 4.38 262 41.1 2424 2746 2607 2701 2643 
7 CR4-C-4-2 215 4.38 262 41.1 2393 2746 2607 2701 2643 
8 CR4-C-8 215 4.38 262 80.3 3837 4304 4170 4238 4235 
9 CR4-D-2 323 4.38 262 25.4 3367 3867 3947 3789 3713 
10 CR4-D-4-1 323 4.38 262 41.1 4950 5358 5238 5305 5260 
11 CR4-D-4-2 323 4.38 262 41.1 4830 5358 5238 5305 5260 
12 CR4-D-8 324 4.38 262 80.3 7481 9212 8994 9225 9329 
13 CR6-A-2 144 6.36 618 25.4 2572 2573 2563 2560 2591 
14 CR6-A-4-1 144 6.36 618 40.5 2808 2850 2862 2864 2876 
15 CR6-A-4-2 144 6.36 618 40.5 2765 2850 2862 2864 2876 
16 CR6-A-8 144 6.36 618 77 3399 3485 3520 3502 3476 
17 CR6-C-2 211 6.36 618 25.4 3920 4335 4280 4351 4346 
18 CR6-C-4-1 211 6.36 618 40.5 4428 4927 4901 4980 4973 
19 CR6-C-4-2 211 6.36 618 40.5 4484 4927 4901 4980 4973 
20 CR6-C-8 211 6.36 618 77 5758 6335 6353 6340 6354 
21 CR6-D-2 319 6.36 618 25.4 6320 7463 7402 7498 7526 
22 CR6-D-4-1 319 6.36 618 41.1 7780 8879 8848 8992 9058 
23 CR6-D-4-2 318 6.36 618 41.1 7473 8839 8808 8952 9017 
24 CR6-D-8 319 6.36 618 85.1 10357 12996 13018 12965 13004 
25 CR8-A-2 120 6.47 835 25.4 2819 2603 2592 2598 2624 
26 CR8-A-4-1 120 6.47 835 40.5 2957 2815 2818 2802 2800 
27 CR8-A-4-2 120 6.47 835 40.5 2961 2815 2818 2802 2800 
28 CR8-A-8 119 6.47 835 77 3318 3252 3249 3189 3159 
29 CR8-C-2 175 6.47 835 25.4 4210 4198 4196 4270 4272 
30 CR8-C-4-1 175 6.47 835 40.5 4493 4617 4648 4680 4662 
31 CR8-C-4-2 175 6.47 835 40.5 4542 4617 4648 4680 4662 
32 CR8-C-8 175 6.47 835 77 5366 5581 5639 5565 5563 
33 CR8-D-2 265 6.47 835 25.4 6546 7120 7089 7256 7236 
34 CR8-D-4-1 264 6.47 835 41.1 7117 8052 8078 8202 8190 
35 CR8-D-4-2 265 6.47 835 41.1 7172 8093 8119 8244 8232 
36 CR8-D-8 265 6.47 835 80.3 8990 10537 10610 10590 10597 
37 CR4-A-4-3 210 5.48 294 39.1 3183 2943 2845 2896 2860 
38 CR4-A-9 211 5.48 294 91.1 4773 4909 4873 4856 4879 
39 CR4-C-4-3 210 4.5 277 39.1 2713 2646 2537 2611 2562 
40 CR4-C-9 211 4.5 277 91.1 4371 4641 4559 4589 4609 
41 CR6-A-4-3 211 8.83 536 39.1 5898 5404 5397 5378 5360 
42 CR6-A-9 211 8.83 536 91.1 7008 7280 7274 7276 7263 
43 CR6-C-4-3 204 5.95 540 39.1 4026 4069 4082 4156 4136 
44 CR6-C-9 204 5.95 540 91.1 5303 5932 5977 5979 5980 
45 CR8-A-4-3 180 9.45 825 39.1 6803 6241 6288 6189 6165 
46 CR8-A-9 180 9.45 825 91.1 7402 7506 7562 7485 7504 
47 CR8-C-4-3 180 6.6 824 39.1 5028 4797 4836 4880 4849 
48 CR8-C-9 180 6.6 824 91.1 5873 6235 6302 6217 6240 
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No. Sample a, mm t, mm Ry, MPa Rb, 
MPa 

Nult, kN 
experime

nt ANN1 ANN2 ANN3 ANN4 

Schneider, S.P. (1998) [33] 
49 S1 127.3 3.15 356 30.454 917 1080 1070 1056 1074 
50 S2 126.9 4.34 357 26.044 1095 1171 1154 1136 1158 
51 S3 126.95 4.55 322 23.805 1113 1101 1072 1063 1081 
52 S4 125.9 5.67 312 23.805 1202 1199 1158 1160 1184 
53 S5 127 7.47 347 23.805 2069 1521 1506 1494 1538 

Lin, C.Y. (1988) [34] 
54 D7 150 0.7 250 23 569 743 790 748 742 
55 D8 150 0.7 250 23 624 743 790 748 742 
56 D10 150 1.4 250 23 726 815 844 812 804 
57 D12 150 2.1 250 23 809 891 902 883 871 
58 E7 150 0.7 250 34.4 762 911 912 913 903 
59 E10 150 1.4 250 36 993 1023 997 1015 1003 

Zhu, A. et al. (2017) [35] 
60 Pa-6-1 197 6.3 438 26.58 2730 3063 3083 3075 3062 
61 Pa-6-2 198.5 6.2 438 25.81 3010 3039 3061 3052 3036 
62 Pa-6-3 200.5 6.25 438 24.47 2830 3050 3072 3058 3041 
63 Pa-10-1 201 10.2 382 26.58 3980 3858 3912 3849 3874 
64 Pa-10-2 201 10.1 382 25.81 3920 3806 3858 3797 3821 
65 Pa-10-3 199.5 10 382 24.47 3900 3694 3744 3686 3712 

Yamamoto, T. et al. (2022) [36] 
66 S10D-2A 100.2 2.18 300 25.7 609 667 631 617 633 
67 S20D-2A 200.3 4.35 322 29.6 2230 2232 2219 2232 2196 
68 S30D-2A 300.5 6.1 395 26.5 5102 5160 5177 5151 5107 
69 S10D-4A 100 2.18 300 53.7 851 884 795 804 830 
70 S20D-2A 200.1 4.35 322 57.9 3201 3204 3159 3219 3208 
71 S30D-4A 300.6 6.1 395 52.2 6494 7228 7185 7297 7333 
72 S10D-6A 101.1 2.18 300 61 911 951 855 865 891 
73 S20D-6A 200.2 4.35 322 63.7 3417 3403 3363 3417 3412 

Han, L.-H. (2002) [37] 
74 rc1-1 100 2.86 228 48.3 760 836 717 745 762 
75 rc1-2 100 2.86 228 48.3 800 836 717 745 762 
76 rc2-1 120 2.86 228 48.3 992 1029 909 951 959 
77 rc2-2 120 2.86 228 48.3 1050 1029 909 951 959 

Liu, D. et al. (2003) [38] 
78 C1-1 99.25 4.18 550 70.8 1490 1544 1488 1486 1491 
79 C1-2 101.05 4.18 550 70.8 1535 1578 1526 1525 1529 
80 C2-1 101.05 4.18 550 82.1 1740 1682 1618 1618 1613 
81 C2-2 100.55 4.18 550 82.1 1775 1671 1606 1607 1602 
82 C3 182 4.18 550 70.8 3590 3747 3849 3927 3917 
83 C4 181.1 4.18 550 82.1 4210 4043 4143 4195 4190 

Han, L.-H., Yao, G.H. (2003) [39] 
84 M-1-1 130 2.65 340.1 22 760 909 924 889 898 
85 M-1-2 130 2.65 340.1 22 770 909 924 889 898 

Han, L.-H., Yao, G.H. (2004) [40] 
86 ssh-1 200 3 303.5 40 2306 2200 2177 2240 2203 
87 ssh-2 200 3 303.5 40 2284 2200 2177 2240 2203 

Yu, Q. et al. (2008) [41] 
88 S30-1 100 1.9 404 121.6 1209 1500 1352 1372 1377 
89 S30-2 100 1.9 404 121.6 1220 1500 1352 1372 1377 
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No. Sample a, mm t, mm Ry, MPa Rb, 
MPa 

Nult, kN 
experime

nt ANN1 ANN2 ANN3 ANN4 

90 S30-3 100 1.9 404 121.6 1190 1500 1352 1372 1377 
91 S30-4 100 1.9 404 121.6 1220 1500 1352 1372 1377 

Chen, C.-C. et al. (2002) [42] 
92 AA-48 500 10 389 42.5 16500 17619 17626 17696 17633 
93 AA-40 500 12 378 42.5 17900 18683 18674 18697 18672 
94 AA-32 410 12 378 42.5 12800 13623 13716 13715 13765 
95 AA-24 410 16 358 42.5 15300 15114 15209 15252 15279 

Ding, F.-X. et al. (2014) [43] 
96 SST1-A 249.6 3.7 324.3 40.4 3131 3525 3486 3575 3529 
97 SST1-B 251 3.75 324.3 40.4 2832 3575 3533 3622 3577 
98 SST1-C 251.1 3.73 324.3 40.4 2677 3570 3529 3619 3573 

Aslani, F. et al. (2015) [44] 
99 SC1A 70 5 701 21 1122 1085 978 964 999 

100 SC2A 100 5 701 21 1417 1496 1448 1444 1477 
Khan, M. et al. (2017) [45] 

101 CB15-SH (A) 74.04 4.91 762 100 1636 1708 1506 1521 1486 
102 CB15-SH (B) 72.87 4.88 762 100 1755 1678 1473 1488 1453 
103 CB20-SH (A) 99.56 4.91 762 100 2520 2352 2237 2234 2205 
104 CB20-SH (B) 99.2 4.93 762 100 2632 2346 2229 2227 2197 
105 CB25-SH (A) 124.43 4.93 762 100 3023 3159 3128 3110 3093 
106 CB25-SH (B) 124.94 4.94 762 100 2962 3180 3151 3132 3116 
107 CB30-SH (A) 149.99 4.92 762 100 4115 4156 4192 4162 4164 
108 CB30-SH (B) 149.87 4.92 762 100 3968 4151 4187 4157 4159 

Xiong, M.-X. et al. (2017) [46] 
109 S1 150 8 779 193 6536 6842 7047 6953 7581 
110 S2 150 8 779 199 6715 6926 7216 7074 7793 
111 S3 150 8 779 187 6616 6755 6889 6835 7380 
112 S4 150 8 779 208 7276 7044 7488 7257 8135 
113 S5 150 8 779 188 6974 6770 6915 6855 7413 
114 S6 150 12 756 193 8585 7790 8346 8038 8807 
115 S7 150 12 756 199 8452 7852 8529 8137 9009 
116 S8 150 12 756 187 8687 7723 8173 7940 8618 
117 S9 150 12 756 208 8730 7935 8822 8289 9335 
118 S10 150 12 756 188 8912 7734 8201 7957 8648 
119 S11 150 12.5 446 193 5953 5557 6194 6027 6340 
120 S12 150 12.5 446 199 5911 5591 6333 6095 6444 
121 S13 150 12.5 446 187 6039 5519 6061 5959 6239 
122 S14 150 12.5 446 208 6409 5632 6552 6194 6609 
123 S15 150 12.5 446 188 6285 5525 6083 5971 6256 

 
Table 5. Characteristics of the quality of model forecasting. 

 ANN1 ANN2 ANN3 ANN4 

Npredict/Nexp mean 1.046579 1.037273 1.037224 1.046729 
max 1.333582 1.388401 1.351886 1.334703 
min 0.735138 0.727888 0.722088 0.743354 

Standard deviation 0.102275 0.101901 0.100931 0.097743 
Coefficient of variation 9.77234 9.823902 9.730883 9.337981 
 

Table 5 shows that quality metrics of the models are quite close, and layer recurrent neural network 
provides the best agreement with the experimental data. The results deviation from the experimental data 
can be primarily explained by the fact that when training the ANN, the simplified model of the CFST columns 
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deformation was used. This model did not take into account the slipping of the concrete core in the steel 
shell, the separation of the steel shell from the concrete core, and the effects of local buckling. In addition, 
of course, there was a scatter in the experimental data, which can be observed in Table 3. Our further 
research will be aimed at developing ANNs based on more complex theoretical models [47–48]. 

4. Conclusion 
1. Four ANN models have been developed to predict the load-bearing capacity of centrally compressed 

CFST columns of square cross-section based on the following architectures: cascade forward 
backpropagation network, Elman neural network, feedforward neural network, layer recurrent neural 
network. The ANNs were trained on synthetic data obtained through a numerical experiment using a 
simplified method for 22308 samples. 

2. The trained neural networks are characterized by low MSE, and the correlation coefficients between 
the predicted and target values are close to one. The best MSE value was achieved using the Elman 
neural network architecture that has a feedback. 

3. The developed models of ANNs were tested on experimental data for 123 samples presented in 15 
different papers. The model based on the layer recurrent neural network architecture, which has 
feedback like Elman neural network, showed the best forecasting quality. The average ratio of the 
predicted ultimate loads values to the experimental ones was 1.047, the maximum was 1.335, and the 
minimum was 0.743. 

4. Further research can be aimed at training ANNs using more complex theoretical models that take into 
account the features of the contact interaction between the concrete core and the steel shell, the effects 
of local buckling, the slenderness of the elements, the presence of eccentricities, etc. 
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