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Abstract. The article is devoted to the development of methods for identification and validation of the
parameters of the "Concrete Damage Plasticity" material model based on experimental studies. During the
experiments, prismatic samples were tested for sign-constant cyclic load after preliminary heat treatment
at various temperatures. According to the test results, the temperature dependences of the mechanical
properties were established: the conditional proportionality limit, the ultimate strength, Young's modulus,
and the scalar damage variable. Piecewise analytical envelopes were used to plot the stress-strain curves,
which describe linear, inelastic, and descending parts. Accumulated concrete scalar damage variable
during compression is determined based on the elastic modulus degradation analysis at each loading cycle.
Parameters of analytical approximations are determined directly through experimental data or using
numerical identification method based on an iterative process of searching for the minimum functional. The
structure of the minimized functional contains auxiliary subfunctions due to well-known statistical indicators:
the standard deviation of the compared values, the linear correlation coefficient, and the area under the
compared dependencies. The search for the minimum of the desired value is carried out using the gradient
descent method according to the criterion of the minimum contribution of the sum of three subfunctions. At
the last step of the study, the obtained model is validated based on the calculation for uniaxial and cyclic
loading of a single-element prismatic sample in the ABAQUS FEA. The developed calculation method
makes it possible to complete the loading cycle at any axial force value, including zero, as well as to
continue the next loading cycle from the current stress state. The considered method for validating the
inelastic deformation model for concrete is characterized by its consistency and versatility. The results
demonstrate sufficient accuracy in approximating uniaxial and cyclic stress-strain curves, and the proposed
approximation relationships are free from ambiguity when converting the inelastic part of strain to plastic
one.
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1. Introduction

Today, mechanical design methods are characterized by increased requirements for safety and wear
resistance, especially during operation in high-temperature conditions. Along with this, the issue of correctly
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assessing the viability of critical elements of structures is becoming acute. It is impossible to imagine solving
such problems without carrying out full-scale tests and numerical modeling procedures using modern
computational environments.

One of the main structural materials is concrete. A distinctive feature of concrete is its fundamentally
different behavior during compression and tension, as well as the phenomenon of cracks and damage
formation and propagation [1-3]. Tests for cyclic sign-constant loading without transition to the tensile
region make it possible to determine the main mechanical characteristics of the material — the initial Young
modulus, the conditional proportionality limit, the compressive strength of concrete, as well as to identify
the material stiffness degradation by determining the dependence of the scalar variable of accumulated
damage on the magnitude of inelastic deformations [4—7]. It is often important to understand how the key
characteristics of a structure change under thermal conditions. In this case, it is about a family of
experiments for different temperature values [8]. The numerical modeling of inelastic deformation
processes is based on mathematical models. One of the most wide-spread models for concrete is the
"Concrete Damaged Plasticity" (CDP) model [9-13], implemented in the ABAQUS FEA [14]. The model is
widely used and finds its application in many tasks related to the deformation and fracture of concrete and
concrete-like (with a granular structure) materials [15-21].

This model considers inelastic behavior in both compression and tension and takes into account not
only material damage [22-24] but also partial recovery of properties during reverse-sign loading [25]. The
CDP model is purposed for calculating structures under the influence of monotonous, cyclic, and dynamic
loads.

Analytical approximations are often used to describe compression diagrams and scalar damage
variables [25-27]. A distinctive feature of such approaches is the unambiguous relationship between plastic
and inelastic strain. In contrast to the case of an arbitrarily defined envelope of the diagram, such a
relationship eliminates the disadvantages associated with the decrease, including to negative values, of
plastic strain when they are recalculated from inelastic ones. In addition to the basic constants of the
material, the parameters included in the approximation dependences are also subject to identification.

As already mentioned, some model parameters are explicitly defined based on existing
dependencies. However, a more sophisticated approach is required to determine the proportion of plastic
strain contained in the inelastic part. In this case, the algorithm proposed in [28] was used as the basis for
the identification procedure. In the current work, a modified criterion is used, presented as the sum of the
simplest ones.

Using the interpolation method, the obtained parameters make it possible to form universal analytical
dependencies for arbitrary temperature values. The corresponding curves are supposed to be used for the
verification task in the ABAQUS FEA. The kinematic loading of a single-element prismatic sample for
uniaxial and cyclic action is assumed. The criterion for the model's operability in this case will be the
coincidence of the sample response in terms of stress and strain, as well as the nature of the Young
modulus (stiffness) degradation with the initially set properties.

2. Methods
2.1. Processing of Experimental Data

During the experiments, prismatic concrete samples of 70x70x280 mm were tested for cyclic sign-
constant compression until failure under normal conditions (20 °C), as well as after heat treatment at
temperatures of 100, 400, and 600 °C in a cooled state. The tests were carried out on samples of heat-
resistant concrete from a self-sealing mixture.

The amount of deformation of the samples during their loading/unloading was measured using digital
electronic indicators mounted on each side of the prismatic sample according to a scheme similar to that
used to determine the Young modulus of concrete. The load value was determined by a compression
dynamometer. The readings were recorded at a sampling rate of 140 ms using a hardware and software
package developed separately for this task.

Figs. 1 and 2 show the condition of the samples after the first and last loading cycle for temperatures
of 20 and 600 °C.
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Figure 1. The state of the sample after the first (left)
and last (right) loading cycle at a temperature of 20 °C.
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Figure 2. The state of the sample after the first (left)
and last (right) loading cycle at a temperature of 600 °C.

Primary processing of cyclic loading diagrams involves finding the ultimate strength, the conditional
proportionality limit, and analyzing the Young modulus (stiffness) degradation. The conditional
proportionality limit here is a value equal to 0.4 of the ultimate strength.

Fig. 3 shows the cyclic loading diagrams for the given temperatures, as well as the initial modulus of
normal elasticity and its degradation, the conditional limit of proportionality and the ultimate strength.
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Figure 3. Cyclic loading diagrams for the given temperatures
with designations of the ultimate strength fcm, the conditional proportionality limit 0.4 fcm,
and the evolution of Young modulus.
Here o, is the compression normal stress, ¢, is the total axial strain, £ is the Young modulus at
the i-th cycle.
It is worth noting that the plotting of slope lines at each cycle characterizing the linear-elastic part can
be carried out both along the unloading and loading path [26]. In this case, a variant of the slope of the line

following from the end of unloading (the beginning of the next loading cycle) to the point where the
dependence, having a negative second derivative, begins to acquire a non-linear character.

Based on the diagrams shown, it is easy to form the dependences of the scalar damage variable on
inelastic strain. Inelastic strain can be recalculated through total ones according to the relation (1) [5, 6, 14,
26]:

g =g, ——=, (1)

where E_. = F| is the initial Young modulus.

At the same time, the relationship between the actual Young modulus at the i -th cycle and the initial
one is determined by dependence (2) [5, 6, 16]:

E;=(1-d,)E,, )

where d. =d, (82”) is the scalar damage (stiffness degradation) variable.

In addition to inelastic strain, the plastic component is separately identified. It is obviously less than
inelastic one when taking into account damage, but in the absence of such, these values are the same. In
this case, plastic strain cannot be negative and must increase with increasing load. Plastic component of
strain is related to total and inelastic according to expression (3) [27]:

m__1 % (3)

pl_ o _ Oc — e
T Ca)E, T (1-d,)E,

Being a function of inelastic strain, the parameter d. is calculated at each loading cycle using

expression (2) for a given value of 82”. By performing this procedure for each diagram, a family of
dependencies is obtained for each temperature. Fig. 4 shows a family of dependencies of the scalar
damage variable on inelastic strain for temperatures of 20, 100, 400, and 600 °C. It is clear that dc (O) =0.
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Figure 4. Family of dependencies of scalar damage variable on inelastic strain
for temperatures of 20, 100, 400, and 600 °C.

The obtained characteristics fully correspond to the experiments, however, for the setting of
numerical procedures, they require more detailed analysis. This is primarily due to the features of the CDP
model. For the full-fledged operation of the model, at least it is necessary to specify the basic elastic
characteristics, a stress-strain curve describing nonlinear (including plastic) strain, as well as information
on the initial stiffness properties degradation for optional damage accounting. At the same time, the
specified characteristics should not contradict the basic principles of mechanics of a deformable solid.

So, not every arbitrarily defined envelope of a cyclogram can correspond to an adequate relationship
between the plastic and inelastic parts of strain, as well as to a given law of properties degradation (equation
(3)). In this case, it is more reasonable to use analytical approximations, which, when implemented in
constitutive equation, obviously eliminate these disadvantages.

2.2. Analytical Dependencies

Expressions (1)—(3) underlie the dependence of normal compression stress on relative axial strain,
taking into account damage [25] in the form of expression (4):

Gcz(l_dc)Ec(gc_gfl)' (4)

The difference between a model of a material with plasticity, a model of a material with damage, and
a model of a material with damage and plasticity is best demonstrated in Fig. 5 [25].
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Figure 5. Comparison of model behavior: material model with plasticity (left),
material model with damage (middle), and material model with damage and plasticity (right).

Here 8?1 is the total elastic strain.

For the analytical description of stress-strain curves, piecewise analytical dependencies (5)—(7) are
used [26]. The diagram is divided into three sections: the linear-elastic section, the ascending part up to
the ultimate strength, and the descending part. A division into sections scheme can be seen in Fig. 6 [26].
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Figure 6. Piecewise analytical partition of a stress-strain curve.

Here €, is the ultimate compression strain.

Gc(l) = Ecgc; (5)
2
Ecz fgc _[86]
_ cm €l .
Oc(2) = . . (6)
1+| E,, e —2|2c
cm €1
2+ 2\
Gc(3) — YCfcmgcl — Y, &, + Yce , 7)
2fcm 2801

where E ;, v are the parameters of analytical approximations to be identified.

The relationship between the scalar damage variable and inelastic (or plastic) strain is obtained from
the expression (3):

oc/E

in p! )
<SC +éef )+GC/EC

d, =1- (8)

From expression (3) and Fig. 6, it can be seen that plastic strain, taking into account damage, is
obviously less than inelastic one. This gives reason to believe that one can be expressed through the other
using the proportionality coefficient. The proposed approach is outlined in [24—26] and shown in ratio (9):

el = b g, )
where 0 < b, <1 is the parameter of analytical approximations to be identified.

In this case, dependence (8) is transformed into the form:

; E
d, (el )=1-— S/ e . 10
C(SC ) e (l—bc)+cc/EC 10

Parameter identification is supposed to be carried out using the built-in procedures of the MATLAB
computational environment.
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Parameter Identification for Stress-strain Curves

To plot stress-strain diagrams, it is necessary to obtain cyclogram envelopes, the parts of which are
described by expressions (5)—(8). The Curve Fitting Toolbox built into the MATLAB environment is well

suited for this.

Fig. 7 shows the envelopes of the cyclograms for temperatures of 20, 100, 400, and 600 °C.
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Figure 7. Cyclogram envelopes for temperatures of 20, 100, 400, and 600 °C.

The values of the selected parameters of analytical dependencies for all temperatures are presented
in Table 1 of Section 2.5, as well as in Figs. 10 and 11.

2.4. Parameter Identification for Scalar Damage Variable

The identification of the b, parameter that is present in dependence (10) is carried out based on the

approach described in [28]. The fmincon tool implemented in the MATLAB environment, which is based on
the gradient descent method, is used [29]. The algorithm block scheme is shown in Fig. 8.
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Figure 8. The b. parameter search algorithm.

Here bg is the initial value of the parameter; bé is the value of the parameter at the i -th iteration of

the optimization procedure; bfpt is the optimal value of the parameter according to the criterion; Y is the

minimized functional; Y], Y,, Y; are the functionals that characterize the degree of closeness of the
analytical dependence to its experimental etalon.

The functional Y] considers the standard deviation of two values [30]. The formulation of this
functional is described by the expression (11):

lez(dexp( ) danalyt(gc ))2 (11)

The functional Y, considers the linear Pearson correlation coefficient between two values and its
proximity to 1 [31]. The formulation of this functional is described by the expression (12):

() 2R )
(o) (@) 2o ()2

The functional Y; considers the difference in areas under dependencies. The formulation of this
functional is described by the expression (13):

Y2=

in
€¢,max

_ ex| in analyt in
Y = g (dcp(sc) e ))de (13)

Fig. 9 shows a comparison of the analytical and experimental dependencies of scalar damage
variables on the value of inelastic strain for temperatures of 20, 100, 400, and 600 °C. It is assumed that
these dependencies will be extended to the final values of inelastic strain on corresponding stress-strain
curves.
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Figure 9. Comparison of analytical and experimental dependencies of scalar damage
variable on the value of inelastic strain for temperatures of 20, 100, 400, and 600 °C.

The values of the bC parameter for all temperatures are presented in Table 1 of Section 2.5, as well

as in Figs. 10 and 11.

2.5.

Temperature Dependencies

The obtained stress-strain and scalar damage variable curves were used in the verification of the
CDP mathematical model based on the problem of uniaxial monotonic and cyclic loading of a prismatic
concrete sample in the ABAQUS FEA. In problems with intense high-gradient temperature loading, due to
a large gap in the temperature grid, interpolation errors can occur when determining the physical and
mechanical characteristics of the material. In this regard, it is proposed to plot the obtained analytical
dependencies for an extended family of temperatures. Figs. 10 and 11 show the dependence of the basic
constants of the material on temperature. Using the linear interpolation method, the temperature grid is
expanded from 20, 100, 400, and 600 °C to 20, 100, 150, 200, 300, 400, 500, and 600 °C.
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Figure 11. Interpolation of analytical function parameters to an extended temperature grid.

Here, the index "initial" indicates constants that have been identified based on experimental data for
temperatures of 20, 100, 400, and 600 °C, and the index "detailed" indicates constants that have been
interpolated to an extended value of temperatures of 20, 100, 150, 200, 300, 400, 500, and 600 °C.

In Table 1, the results of identifying for all parameters are shown.

Table 1. Summary table of identification results.

Temperature 20 °C 100 °C 150 °C 200 °C 300 °C 400 °C 500 °C 600 °C

E., [GPa] 44.9916 34.6872 32.3861 30.0849 25.4826 20.8802 13.8075 6.73477
fem, IMPa] 47.0642 60.5492 55.2167 49.8842 39.2192 28.5542 23.3732 18.1922
Ec1'10%, [-] 1.87101 2.46612 2.66787 2.86961 3.27309 3.67657 4.32343 4.97028
E., [GPa] 40.0000 35.0000 32.4167 29.8333 24.6667 19.5000 13.0000 6.50000

Ye, [MPa] 20.3100 250.000 212.000 174.000 98.0000 22.0000 33.5000 45.0000

be, [H 0.46357 0.50465 0.52814 0.55163 0.59861 0.64559  0.693165  0.74074
Y 0.00792 0.10066 - - - 0.10495 - 0.05962
Y2 0.00735 0.01174 - - - 0.01048 - 0.00954
Y3 5.91e-5 3.27e-5 - - - 8.11e-5 - 3.64e-5
Y 0.00866 0.11244 - - - 0.11551 - 0.06920

The dependencies shown in Figs. 7 and 9 can be fully used to verify the numerical calculation method
in the ABAQUS FEA. Figs. 12 and 13 show the extended compression strain values of the corresponding
dependencies family.
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Figure 12. Stress-strain curves family: 6.(g., T) (left), 6.(c"c, T) (right).
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Figure 13. Scalar damage variable family curves d.(g"., T).

3. Results and Discussion
3.1. Verification of the CDP Model with Identified Parameters

Fig. 14 shows the formulation of the problem in the ABAQUS FEA for a prismatic concrete sample
with dimensions of 70x70x280 mm. In addition to the concrete sample, the model contains steel plates with

linear-elastic properties. Density of steel is p,,,.,; = 7850 kg/m3, Young modulus is £ = 200 GPa,

Poisson's ratio is v,,; = 0.3. To determine the mechanical properties, it is advisable to model a concrete

teel

specimen with a single finite element. In this case, the sample is perceived as a sample of the material,
and not as a structure.

Steel I

- Concrete -
T

-
s ~

~

[
\\ _—
'vL“ \T

Figure 14. Geometric (left) and finite element (right) model.

In addition to the basic properties, in order to stabilize the applied explicit numerical integration
scheme (ABAQUS/EXPLICIT solver), the concrete model also takes into account Rayleigh damping
according to the relations (14).

a (OF
_+B : zaia

14
2; 2 1)

where @, is the coefficient of mass matrix; 3 is the coefficient of stiffness matrix; ; is the i-th natural

frequency; EJi is the damping coefficient by i -th natural frequency and its value assumed to be equal 0.1.

In this formulation, only damping proportional to the mass is considered, based on the lowest and
unique frequency of oscillations of the sample as a rod within the single-element model, so it can be
assumed that 3 = 0. In turn, the first natural frequency of the concrete sample with the given dimensions

and properties will be found according to expression (15).
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T E,
— (15)

2l pconcrete

The temperature is set on the concrete element to detect differences in behavior due to properties
change. For verification, it is proposed to compare the sample response obtained by calculation with the
analytical stress-strain curves specified as material properties for temperature values of 20 and 100 °C.

0)1:

Fig. 15 shows the boundary conditions in the model. The lower surface of the steel plate is rigidly
fixed in space, and the upper surface is connected to the master node, which moves in proportion to the

cube of time u, ~ £ (kinematic loading) throughout the loading step. Cubic dependence is used for the
smooth increase in the acceleration of the plate movement.

e ]

B

z

L.

Figure 15. Boundary conditions.

Ty h’a"ﬂm

The calculation is carried out in the "Dynamic Explicit" formulation. In the case of uniaxial loading,
the displacement value (16) corresponding to the final total strain value for the respective temperature shall
be applied to the master-node.

g ==, (16)

where 1, is the absolute vertical displacement of the master-node; [ is the initial length of specimen.

For cyclic loading, the total calculation time is divided by the number of cycles, and the calculation of
each cycle is done independently, but with the initial state of the previous cycle. This can be implemented
using "initial state" technology in the ABAQUS FEA. Moreover, the resulting displacement value applied to
the master-node is also distributed equally across the cycles. However, for this it is necessary not only to
divide the total displacement by the number of cycles but also to take into account the accumulated strain.

An important point in the calculation for a sign-constant cyclic load is force control, since it is
necessary to stop the calculation at the desired value, without entering the tension region. To do this, it is
suggested to modify the ABAQUS keyword file. Moreover, using the "initial state" technology, it is possible
to set different values of stop force at each load cycle. A description of the commands that should be added
to the keyword-file is shown in Table 2.

Table 2. ABAQUS keyword-file modification.
The "YES" parameter meets the requirement to stop calculation when the

critical value is reached.

*EXTREME NODE VALUE, The calculation stops when the maximum value "MAX" of the monitored value
NSET=RP2, MAX is reached in a set of nodes named "RP2".

The calculation stops when the vertical force reaction "RF3" reaches a value
of "0.0" in a set of nodes named "RP2".

*EXTREME VALUE, HALT=YES

RF3, 0.0

At the end of the calculation, information about the reaction, as well as about the displacement, is
taken from the master-node, which is converted by scaling into stress and strain according to the ratios (16)
and (17).
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c,.=—, (17)

where R. is the vertical force reaction in the master-node, A is the cross-sectional area of the specimen.

Then the stress-strain curves are compared — specified as a material properties and obtained from
the calculations one.

3.2. Results of Calculations for Uniaxial Compression

Fig. 16 shows a comparison of the uniaxial compression response of a concrete specimen in
ABAQUS with the initial, analytically determined, stress-strain curve for temperatures of 20 and 100 °C.
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Figure 16. Comparison of calculations: 20 °C (left), 100 °C (right).

There is a complete correspondence of the obtained result with the analytically specified stress-strain
curve.

3.3. Results of Calculations for Cyclic Loading

Figs. 17 and 18 show the results of the calculation for cyclic loading. The number of cycles for
assessing the degradation of initial elastic properties varied, and options for different values of the reaction
in the master-node at which the calculation stops were considered.
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Figure 17. Cyclic load calculation results: 4 cycles with discharge up to 0 kN (left),
50 cycles with unloading up to 0 kN (right)
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Figure 18. Cyclic load calculation results: 10 cycles with unloading up to 24.5 kN (left),
10 cycles with unloading up to 98 kN (right)

As can be seen from the presented results, under cyclic loading, the general contour of the stress-
strain coincides with the initial one, analytically approximated based on experiments [26]. It should be noted
that the procedure for stopping the calculation at a given value of vertical force reaction demonstrates its
viability. When unloading to force values less than any value on the envelope, the calculation continues
two branches of the calculation in the cycle — both for loading and unloading. In turn, when unloading to
force values greater than the value on the envelope, the unloading branch is not included, and the
calculation follows further along the loading path.

It can also be noted that the results obtained reflect the global practice of modeling inelastic
deformation of concrete [4-6, 15-21]. The main aspects of nonlinear behavior under uniaxial and cyclic
loading are observed, the temperature dependence of mechanical properties is taken into account, and the
behavior of materials with a granular structure in terms of degradation of primary properties (fracture) is
taken into account.

4. Conclusions

The paper demonstrates the validation of the CDP mathematical model of nonlinear deformation and
strength using the ABAQUS FEA. Using hardware and software complex and test equipment developed
separately for this task, the general mechanical properties of heat-resistant concrete were determined,
obtained during experiments on cyclic sign-constant loading after exposure to high temperatures. With the
help of analytical approximations, the appearance of stress-strain curves, as well as curves of scalar
damage (stiffness degradation) variable for different temperatures, was restored.

The proposed methods for identifying parameters make it possible to fully construct a ready-made
mathematical model in the MATLAB environment, the input to which is sufficient to provide the initial
experimental data. The process of identifying parameters is accompanied by well-known statistical
indicators. At the same time, the analytical forms of approximation eliminate the shortcomings associated
with the physical nature of the values.

An important aspect of solving the problems of mechanics of a deformable solid is the presence of
inhomogeneous, including high-gradient, temperature fields, which significantly affect the physical and
mechanical properties of materials and the behavior of structures. Often, when operating under limited data,
it is necessary to obtain dependencies for intermediate temperature values. Using the linear interpolation
method based on the proposed analytical dependencies, a family of curves for an extended temperature
grid was obtained.

In conclusion, the verification problem for uniaxial cyclic sign-constant loading was implemented. The
problem was solved for a concrete sample with fixed dimensions. Finite-element formulation implied single-
element mesh subdivision. The validity of this solution lies in the fact that in the case of multi-element
subdivision, the tested object ceases to be interpreted as a sample, but is a construction of a non-trivial
form. This approach also has the right to exist, but often the increase in the number of elements is
associated with side effects and, as a result, this can lead to distorted results.

The results obtained on the verification task showed full compliance of the material model with its
initial characteristics based on experimental data.
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