doi: 10.5862/MCE.56.2

Effects of structure type on viscoelastic properties of geosynthetics

I.I. Loginova, D.A. Artamonova, O.N. Stolyarov, B.E. Melnikov, Peter the Great St. Petersburg Polytechnic University, Saint-Petersburg, Russia

This work presents a study on tensile properties of geosynthetic materials. There were investigated six samples of geofabrics and geogrids with different structures including woven geotextile fabrics, nonwoven geotextile fabrics, warp-knitted geogrids and extruded geogrid.  

The study determined tensile properties of geosynthetics including tensile strength, strain at the maximum load and tensile load at a specified strain. The authors carried out creep and relaxation tests. It was found that the structure type significantly affects viscoelastic properties of geosynthetics materials. The article presents some results of numerous tests, which may be used to pre-select geosynthetics materials.

Key words:

geotextiles; geogrids; woven fabrics; nonwoven fabrics; mechanical properties; creep; stress relaxation

Read the whole article (rus) in pdf

(Loginova I.I., Artamonova D.A., Stolyarov O.N., Melnikov B.E. Vliyaniye struktury na vyazkouprugiye svoystva geosinteticheskikh materialov [Effects of structure type on viscoelastic properties of geosynthetics]. Magazine of Civil Engineering. 2015. No.4(56). Pp. 11–18).

Under Creative Commons Attribution-NonCommercial 4.0 International License

References:

1. Koerner R. Designing with Geosynthetics: Sixth Edition. Xlibris Corp., 2012. 818 p.

2. Shukla S.K. Handbook of Geosynthetic Engineering: Second edition. ICE Publishing, 2011. 424 p.

3. Koerner R. [et al] Geosynthetics: A key toward sustainability. Geosynthetics, 2009. 27(1). Pp. 49–50.

4. Mounes S.M., Karim M.R., Mahrez A., Khodai, A. An overview on the use of geosynthetics in pavement structures. Scientific Research and Essays. 2011. 6(11). Pp. 2251–2258.

5. Bygness R. Geosynthetics included in 'innovative materials: Government report cites geosynthetics for roadway stability and strength. Geosynthetics. 2013. 31(1). Pp. 53–54.

6. Stolyarov O.N., Gorshkov A.S. Primenenie vysokoprochnyh tekstil'nyh materialov v strotel'stve [Application of Extra-strong Textile Materials in Construction]. Magazine of Civil Engineering. 2009. No.4. Pp. 21-25. (rus)

7. Ustyan N.A. Geokontejnery v dorozhnom i gidrotehnicheskom stroitel'stve [Geocontainers in road building and hydraulic engineering construction]. Magazine of Civil Engineering. 2011. No.4. Pp. 22–25. (rus)

8. Badanin A.N., Kolosov E.S. Opredelenie nesushchey sposobnosti armirovannogo georeshetkoy gruntovogo osnovaniya [Determining the bearing capacity of soil foundation reinforced by geogrid]. Magazine of Civil Engineering. 2012. №4(30). Pp. 25–32. (rus)

9. Kaliakin V.N., Dechasakulsom M. Time-Dependent Behavior of Geosynthetic Reinforcement. A Review of Experimental Work. Department of Civil and Environmental Engineering, University of Delaware Newark, 2001. 29 p.

10. Stalevich A.M. Deformirovaniye oriyentirovannykh polimerov [Deformations in oriented polymers]. Saint-Petersburg: SPbGUTD, 2002. 250 p.

11. Koerner R.M., Richardson G.N., Wrigley N.E., Bush D.I., den Hoedt G. Creep and relaxation of geotextile fabrics. Geotextiles and Geomembranes. 1987. 5(4). Pp. 304–306.

12. Wu J.T.H., Helwany S.M.B. A performance test for assessment of long-term creep behavior of soil-geosynthetic composites. Geosynthetics International. 1996. 3(1). Pp. 107–124.

13. Koerner R.M., Koerner G.R. On the creep reduction factors for geotextile puncture protection of geomembranes. Geosynthetics Research and Development in Progress. American Society of Civil Engineers, 2005. Pp. 4259–4264.

14. Wu J.T.H., Helwany S.M.B. A performance test for assessment of long-term creep behavior of soil-geosynthetic composites. Geosynthetics International. 1996. 3(1). Pp. 107–124.

15. Paula A.M.V., Pinho-Lopes M., Lopes M.L. Effect of damage during installation of woven geotextile on their creep and creep rupture behavior – Laboratory tests. Proceedings of the 9th International Conference on Geosynthetics – Geosynthetics: Advanced Solutions for a Challenging World. Delaware: ICG, 2010. Pp. 781–784.

16. Xu S., Zhang Y., Wang Z. Evaluation on stress relaxation properties of geomembrane. Advanced Materials Research (2011 International Conference on Structures and Building Materials). 2011. Pp. 1572–1576.

17. Yoo H., Jeon H.-Y., Chang Y.-C. Evaluation of engineering properties of geogrids for soil retaining walls. Textile Research Journal. 2010. 80(2). Pp. 184–192.

18. Jeon H.-Y. Evaluation of long-term behaviours of geogrids: A review. Proceedings of the Institution of Civil Engineers: Ground Improvement. 2010. 163(4). Pp. 189–195.

19. Yeo S.-S., Hsuan Y.G. Evaluation of creep behavior of high density polyethylene and polyethylene-terephthalate geogrids. Geotextiles and Geomembranes. 2010. 28(5). Pp. 409–421.

20. Scarborough S.E., Fredrickson T., Cadogan D.P., Baird G. Creep testing of high performance materials for inflatable structures. International SAMPE Symposium and Exhibition (Proceedings). 2008. №52. Pp. 18–19.

21. GOST R 56339-2015. Dorogi avtomobil'nye obshchego pol'zovaniya. Materialy geosinteticheskie dlya dorozhnogo stroitel'stva. Metod opredeleniya polzuchesti pri rastyazhenii i razryva pri polzuchesti. [State standard specification. Automobile roads of general use. Geosynthetic for road construction. Determination of the Tensile Creep and Creep Rupture Behavior].

22. França F.A.N., Bueno B.S. Creep behavior of geosynthetics using confined-accelerated tests. Proceedings of the 9th International Conference on Geosynthetics – Geosynthetics: Advanced Solutions for a Challenging World. Delaware: ICG, 2010. Pp. 789–792.

23. Giannopoulos I.P., Burgoyne C.J. Accelerated and Real-Time Creep and Creep-Rupture Results for Aramid Fibers. Journal of Applied Polymer Science. 2012. 123(6). Pp. 3856–3869.

24. Bueno B.S., Costanzi M.A., Zornberg J.G. Conventional and accelerated creep tests on nonwoven needle-punched geotextiles. Geosynthetics International. 2005. 12(6). Pp. 276–287.

25. Zornberg J.G., Byler B.R., Knudsen J.W. Creep of geotextiles using time-temperature superposition methods. Journal of Geotechnical and Geoenvironmental Engineering. 2004. 130(11). Pp. 1158–1168.

26. Baker T.L., Thornton J.S. Comparison of results using the stepped isothermal and conventional creep tests on a woven polyproylene geotextile. Geosynthetics Conference 2001. Portland, 2001. Pр. 729–740.

27. Hsiehl C.W., Lee K., Yoo H.K., Jeon H. Tensile Creep Behavior of Polyester Geogrids by Conventional and Accelerated Test Methods. Fibers and Polymers. The Korean Fiber Society. 2008. 9(4). Pр. 476–480.

28. Grebneva V., Utkina K., Sabri M., Stolyarov O. Application of stepped isothermal method for prediction the creep behavior of extruded polypropylene geogrid. Applied Mechanics and Materials. 2015. Vol. 725–726. Pp. 611–616.





Search
 
Contact us Site map
All rights reserved. When using the information from this site the mention of the resource is obligatory