doi: 10.5862/MCE.56.6

Calculation of the residual bearing capacity of reinforced concrete beams by the rigidity (deflection) criterion

V.S. Utkin, S.A. Solovyov, Vologda State University, Vologda, Russia

The article proposes the method of calculating the bearing capacity of reinforced concrete beams at the operational stage by the rigidity (deflection) criterion.

The methods, which were used in the article, are integral test and probabilistic methods for describing random variables. The author offers a new technique of calculating a deflection limit by a criterion of residual deformations. The article exemplifies the usage of the evidence theory for statistical information processing in the form of a set of intervals. Besides, the paper considers variants of concordance between ultimate and operational loads  for different design schemes of reinforced concrete beams.

Key words:

bearing capacity; ultimate load; reinforced concrete beam; deflection; rigidity; random variable; confidence interval

Read the whole article (rus) in pdf

(Utkin V.S., Solovyov S.A. Opredeleniye ostatochnoy nesushchey sposobnosti zhelezobetonnykh balok po kriteriyu zhestkosti (progiba) [Calculation of the residual bearing capacity of reinforced concrete beams by the rigidity (deflection) criterion]. Magazine of Civil Engineering. 2015. No.4(56). Pp. 45–53).

Under Creative Commons Attribution-NonCommercial 4.0 International License

References:

1. Zolina T.V. Svodnyy algoritm rascheta promyshlennogo obyekta na deystvuyushchiye nagruzki s otsenkoy ostatochnogo resursa [The synthesis algorithm of calculation of an industrial facility on the existing load with the assessment of a residual resource]. Industrial and Civil Engineering. 2014. No. 6. Pp. 3–5. (rus)

2. Bayda D.N. Ostatochnaya nesushchaya sposobnost zhelezobetonnykh balok posle ikh chastichnogo razrusheniya [Residual bearing capacity of reinforced concrete beams after partial destruction]. PhD thesis abstract. Vinnitsa, Ukraine: VNTU, 2005. 20 P. (rus)

3. Baykov V.N., Sigalov E.Ye. Zhelezobetonnyye konstruktsii [Reinforced concrete structures]. Moscow: Stroyizdat, 1991. 767 p. (rus)

4. Utkin V.S. Opredeleniye ostatochnoy nesushchey sposobnosti zhelezobetonnykh balok na stadii ekspluatatsii po kriteriyu prochnosti armatury i betona [Determination of residual load-bearing capacity of concrete beams at the operation stage by the strength reinforcement and concrete criterion]. Magazine of Civil Engineering. 2015. No.1(53). Pp. 15–23. (rus)

5. Yagupov B.A., Migal R.Ye. Zhestkost i progiby balochnykh zhelezobetonnykh konstruktsiy, povrezhdennykh korroziyey [Rigidity and deflection of beam reinforced concrete structures damaged by corrosion]. Concrete and Reinforced Concrete. 2010. No. 5. Pp. 24–27. (rus)

6. Vereshchagin V.S. Opredeleniye progibov mnogoproletnykh zhelezobetonnykh balok s normalnymi treshchinami [The calculation of multi-span reinforced concrete beams deflections with normal cracks]. Concrete and Reinforced Concrete. 2004. No. 1. Pp. 20–22. (rus)

7. Kodysh E.N., Trekin N.N., Trekin D.N. Analiz deformativnosti izgibayemykh zhelezobetonnykh elementov [Analysis of the deformability of flexible reinforced concrete elements]. Industrial and Civil Engineering. 2013. No. 6. Pp. 59–61. (rus)

8. Baymarukov S.Kh. Progiby zhelezobetonnykh balok so smeshannym armirovaniyem pri mnogokratno povtornom nagruzhenii [Deflections of reinforced concrete beams with mixed reinforcement when repeatedly re-loading]. Concrete and Reinforced Concrete. 1999. No. 4. Pp. 12–14. (rus)

9. Cao D.F., Ge W.J., Wang B.Y.,Tu Y.M.Study on the flexural behaviors of RC beams after freeze-thaw cycles. International Journal of Civil Engineering. 2015. Vol. 13. No. 1. Transaction A: Civil Engineering. Pp. 92–101.

10. Hojatkashani A., Kabir M. Z. Experimental examination of CFRP strengthened RC beams under high cycle fatigue loading. International Journal of Civil Engineering. 2012. Vol. 10. No. 4. Pp. 291–300.

11. Lee K.S. Experimental study of sprayed FRP system for strengthening reinforced concrete beams. Journal of advanced concrete technology, 2012. Vol. 10. No. 6. Pp. 219–230.

12. Ohno M., Chijiwa N., Suryanto B., Maekawa K. An investigation into the long-term excessive deflection of PC Viaducts by using 3d multi-scale integrated analysis. Journal of advanced concrete technology. 2012. Vol. 10. No. 2. Pp. 47–58.

13. Ousalem H. [et al.]. Seismic Performance and Flexural Stiffness Variation of Assembled Precast High-Strength Concrete Beam Jointed at Mid-Span Using Transverse Bolts. Journal of advanced concrete technology. 2009. Vol. 7. No. 2. Pp. 205–216.

14. Kadhum M.M. Fire resistance of reinforced concrete rigid beams. Journal of civil engineering and construction technology. 2014. Vol. 5. No. 5. Pp. 35–48.

15. Bischoff P. H. Rational Model for Calculating Deflection of Reinforced Concrete Beams and Slabs. Canadian Journal of Civil Engineering. 2007. Vol. 34. No. 8. Pp. 992–1002.

16. Utkin V.S., Golikova L.V. Patent No. 2161778 RF MPK G01N3/10. Sposob nerazrushayushchego kontrolya nesushchey sposobnosti stroitelnykh konstruktsiy [The nondestructive inspection method of structures bearing capacity]. Moscow: 2001. (rus)

17. Utkin V.S. Patent No. 2006813 RF MPKG01N3/00. Sposob nerazrushayushchego kontrolya prochnosti stroitelnykh konstruktsiy [Method of nondestructive inspection of durability of building structures]. Moscow: 1994. (rus)

18. Luzhin O.V., Zlochevskiy A.B., Gorbunov I.A., Volokhov V.A. Obsledovaniye i ispytaniye sooruzheniy [Inspection and testing of structures]. Moscow: Stroyizdat, 1987. 269 p. (rus)

19. Zemlyanskiy A.A. Obsledovaniye i ispytaniye zdaniy i sooruzheniy: uchebnoye posobiye [Inspection and testing of buildings and structures]. Moscow: Izd-vo ASV, 2004. 240 p. (rus)

20. Shishkin I.F. Metrologiya, standartizatsiya i upravleniye kachestvom [Metrology, standardization and quality management]. Pod red. akad. N. S. Solomenko. Moscow: Izd-vo standartov, 1990. 342 p. (rus)

21. Smirnov A.F. Soprotivleniye materialov [Mechanics of materials]. Moscow: Vysshaya shkola, 1975. 480 p. (rus)

22. Shpete G. Nadezhnost nesushchikh stroitelnykh konstruktsiy [The reliability of load-bearing building structures]. Moscow: Stroyizdat, 1994. 288 p. (rus)

23. Bedov A.I., Saprykin V.F. Obsledovaniye i rekonstruktsiya zhelezobetonnykh i kamennykh konstruktsiy ekspluatiruyemykh zdaniy i sooruzheniy [An examination and reconstruction of reinforced concrete and masonry structures existing buildings and structures]. Moscow: ASV, 1995. 196 p. (rus)

24. Dempster A.P. Upper and lower probabilities induced by multivalued mapping. Annals of Mathematical Statistic. 1967. Vol. 38. No. 2. Pp. 325–329.

25. Shafer G.A. Mathematical theory of evidence. Princeton: Princeton university press, 1976. 297 p.

26. Zhang Z., Jiang. C, Han X., Dean Hu., Yu S. A response surface approach for structure reliability analysis using evidence theory. Advanced in Engineering Software. 2014. Pp. 37–45.

27. Utkin L.V. Analiz riska i prinyatiye resheniy pri nepolnoy informatsii [Risk analysis and decision making with incomplete information]. Saint-Petersburg: Nauka, 2007. 404 p. (rus)

28. Utkin V.S. Utochneniye raschetnykh skhem balok i ram na stadii ekspluatatsii i proverochnyy raschet ikh po nesushchey sposobnosti [Refinement of design schemes beams and frames during the operational stage and the verification of their bearing capacity calculation]. Structural Mechanics and Calculation of Structures. 2015. No. 1. Pp. 6–10. (rus)





Search
 
Contact us Site map
All rights reserved. When using the information from this site the mention of the resource is obligatory