Algorithm for shear flows in arbitrary cross-sections of thin-walled bars

Structural mechanics

Development of a general computer program for the design and verification of thin-walled bar structural members remains an actual task. Despite the prevailing influence of normal stresses on the stress-strain state of thin-walled bars design and verification of thin-walled structural members should be performed taking into account not only normal stresses, but also shear stresses. Therefore, in the paper a thin-walled bar of an arbitrary cross-section which is undergone to the general load case is considered as investigated object. The main research question is development of mathematical support and knoware for numerical solution for the shear stresses problem with orientation on software implementation in a computer-aided design system for thin-walled bar structures. The problem of shear stresses outside longitudinal edges of an arbitrary cross-section (including open-closed multi-contour cross-sections) of a thin-walled bar subjected to the general load case has been considered in the paper. The formulated problem has been reduced to the searching problem for unknown shear forces flows that have the least value of the Castigliano’s functional. Besides, constraints-equalities of shear forces flows equilibrium formulated for cross-section branch points, as well as equilibrium equation formulated for the whole cross-section relating to longitudinal axes of the thin-walled bar have been taken into account. A detailed numerical algorithm intended to solve the formulated problem has been proposed by the paper. The algorithm is oriented on software implementation in systems of computer-aided design of thin-walled bar structures. Developed algorithm has been implemented in SCAD Office environment by the program TONUS. Numerical examples for calculation of thin-walled bars with open and open-closed multi-contour cross-sections have been considered in order to validate developed algorithm and verify calculation accuracy for sectorial cross-section geometrical properties and shear stresses caused by warping torque and shear forces. Validity of the calculation results obtained using developed software has been proven by considered examples.