The modeling method of discrete cracks and rigidity in reinforced concrete
Cracks can be quite critical for the safety of architectural structures so their investigation is crucial. Excessive crack opening in reinforced concrete structures leads to corrosion of the reinforcement, which significantly reduces their serviceability. An extraordinary problem on the width of crack opening was considered for RC (reinforced concrete) elements under the affects of bending and torsion. Its solution was proposed on the basis of RC theory involving the hypotheses of fracture mechanics. The initial hypotheses about the formation and disclosure of spatial cracks for multilayer RC structures were formulated. These proposals allowed assessing the resistance of concrete in tension and the distance between the cracks, as well as the width of its disclosure. Hence, specific features of a double-cantilever element adjacent to spatial cracks were investigated with both mathematical calculations and experimental studies. The results demonstrated that developed new technique can be used for estimating the width of the spatial cracks for RC elements under the affects of bending and torsion.